La infección por el Vírus Zika en células humanas altera el perfil de expresión del miRNA-15 y la activación de caspasas apoptóticas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10699

Palabras clave:

Virus zika; Apoptosis; miRNA-15; HEK-293.

Resumen

Objetivo: Evaluar el perfil de expresión de miARN-15 implicado en factores de regulación apoptótica celular. Metodología: Utilizamos la cepa asiática H818308 de ZIKV sin daño neurológico. Las inoculaciones se produjeron en células renales embrionarias humanas (HEK-293). Después de la inoculación, se extrajeron muestras para la cuantificación RT-qPCR de ARN viral y miR-15. El nivel de activación de las caspasas 1, 3/7 y 8 de las células se realizó mediante quimiofluorescencia. Resultados: La infección por ZIKV altera la expresión de genes y sus reguladores, afectando varios procesos fisiológicos celulares como la apoptosis. Conclusión: Por lo tanto, es importante enfatizar que las células progenitoras renales (HEK-293) son susceptibles a la infección por VZIK. La desregulación genética resultante de la infección afecta directamente a importantes procesos celulares como la apoptosis de la expresión alterada del miARN-15 durante el período de infección.

Citas

Amorim, M. T., Dowich, G. B. R., Miranda, L. B. L., Cunha, R. G., Pinto, C. C., Carvalho, A. J. S., Holanda, G. M. (2020). Determinação molecular comparativa de formas de DNA viral em arbovirus de RNA da família flaviviridae, Brazilian Journal of Health Review, 3 (3) 1771-1780. DOI: 10.34119/bjhrv3n3-133

Asgari, S. (2014). Role of microRNAs in Arbovirus/Vector Intations. Viruses, 6 (9), 3514-3534. DOI: 10.3390/v11020162

Azouz ,F., Arora, K., Krause, K., Nerurkar, V. R., Kumar M. (2019). Integrated MicroRNA and mRNA Profiling in Zika Virus-Infected Neurons. Viruses MDPI, 11 (38), 162-169. DOI: 10.3390/v11020162

Bartel, D, P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116 (2). 281- 297. DOI: 10.1016/s0092-8674(04)00045-5.

Bartel, D. P. (2009). Micrornas: Target Recognition And Regulatory Functions. Cell, 136 (2), 215:233, DOI: 10.1016/j.cell.2009.01.002

Best, M. S., & Bloom, E, M. (2004), Caspase Activation During Vírus Infection: More Than Just The Kiss Of Death? Elsevier. 320 (2) 191-194. DOI: 10.1016/j.virol.2003.11.025

Carvalho, V. O., Guimarães, G. V., Bocchi, E. A. (2012), MicroRNAs: Um novo paradigma no tratamento do diagnóstico da insuficiência cardíaca, Arquivos Brasileiros de Cardiologia, Instituto do Coração - InCor - HCFMUSP, SP, São Paulo, 4 (98), 362-369. DOI: 10.1590/S0066-782X2012000400011

Casseb, S. M. M., Simith, D. B., Melo, K. F. L., Mendonça, M., H., Santos, A. C. M., Carvalho, V. L., Cruz, A. C. R., Vasconcelos, P. F. C. (2016). The mRNA’s drosha, dgcr8 and dicer are sub-regulated in human cells infected by dengue virus 4 and play a role in viral pathogenesis. Genet Mol Res 15 (2), 379-391. DOI: 10.4238/gmr.15027891.

Chambers, T. J., Hahn, C. S., Galler, R. Rice, C. M. (1990). Flavivirus: genome organization, expression and replication. Revista de Microbiologia. 44 (12) 649-688. DOI: 10.1146/annurev.mi.44.100190.003245

Chen, J., Yang, Y., Chen, J., Zhou, X., Dong, Z., Chen, T., Yang, Y., Zou, P., Jiang, B., Hu, Y., Lu, L., Zhang, X., Liu, J., Xu, J., Zhu, T. (2017), Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects. Emerging microbes e infections, 6 (8), 1435-1447. DOI 10.1038/emi.2017.67.

Cowland, J. B., Hother, C., Grønbæk, K. (2007). Micrornas and cancer. Apmis, 115 (13) 1090-1096. DOI: 10.1111/j.1600-0463.2007.apm_775.xml.x

Cuconati, A., White, E. (2002) Viral homologs of Bcl-2: role of apoptosis in the regulation of virus infection. Genes Dev, 16 (6), 2465-2478. DOI:10.1101/gad.1012702

Cullen, B. R. (2006). Viruses and microRNAs. Nature Genetics, 38(17). 25-30. DOI: 10.1038/ng1793.

Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., Rana, T. M. (2016). Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Stem Cell. 19 (2), 258–265. DOI: 10.1016/j.stem.2016.04.014

Dick, G. W., Kitchen, S. F., Haddow, A. J. (1952). Zika virus: isolations and serological specificity. trans r soc trop med hyg, 5 (46) 509-520. DOI: 10.1016/0035-9203(52)90042-4

Duffy, M., Chen, T., Hancock, T., Powers, A., Kool, J., Lanciotti, R., Pretrick, M. (2009). Zika Virus Outbreak on Yap Island, Federated States of Micronesia. New England Journal of Medicine, 36 (26), 2536–2543. DOI: 10.1056/NEJMoa0805715

Fecury, P. C. M. S., Ferreira, J. F. L., Holanda, G. M., Carvalho, C. A. M., Melo, K. F. L., Neto, W. F. F., Luna, F. C. F., Amorim, M. T., Silva, E. V. P., Quaresma, J. A. S., Casseb, S. M. M., Cruz, A. C. R. (2020), Avaliação do perfil de expressão de genes relacionados a via de microRNA’s e apotose em células neurais infectadas experimentalmente pelo vírus zika (ZIKV), Brazilian Journal of Health Review, 3, 3. 1291-1306. DOI: 10.34119/bjhrv3n3-242

Ferreira, R., Holanda, G. M., Silva, E. P., Casseb, S. M. M., Melo, K. F. L., Carvalho, C. A. M., Lima, J. L., Vaconcelos, P. F. C., Cruz, A. C. R. (2018). Zika Virus Alters the Expression Profile of microRNA-Related Genes in Liver, Lung, and Kidney Cell Lineages, 31 (8) 583-588 Immunol Viral. DOI: 10.1089/vim.2017.0186

Farth, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P., Bartel, D. P. (2005) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science, 57 (55), 1817-1821. DOI: 10.1126/science.1121158

Garofalo, M., Condorelli, G., Croce, C. M. (2008). Microwave in disease and response to drugs. Curr. Opin. Pharmacol. 8 (32). 661–667.

Garcez, P. P., Loiola, E. C., Madeiro, D. C. R., Higa, L. M., Trindade, P., Delvecchio, R., Nascimento, J. M., Brindeiro, R., Tanuri, A., Rehen, S. K (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 9 (42) 352-816. DOI: 0.7287/peerj.preprints.1817v3

Gartel, A. L., Kandel, E. S. (2008) miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol, 18 (21), 103-110. DOI: 10.1016/j.semcancer.2008.01.008

Holanda, G. M., Casseb, S. M. M., Melo, K. F. L., Vasconcelos, P. F. C., Cruz, A. C. R. (2017). The yellow fever virus modulates the expression of key proteins related to the microwave route in the human hepatocarcinoma cell line hepg2. Imunol Viral. 30 (5), 336–341.

Hutvagner, G. (2005), Small RNA asymmetry in RNAi: Function in RISC assemblyand gene regulation. FEBS Letters. Search in: https://febs.onlinelibrary.wiley.com/doi/full/10.1016

Junn E; Mouradian M, (2012), Micrornas in neurodegenerative diseases and their therapeutic potential. Rev. Pharmacol. 133 (8) 142–150. DOI: 10.1016/j.pharmthera.2011.10.002

Kim, V. N., Han, J., Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 10 (2), 126-139. Search in:https://www.nature.com/articles/nrm2632

Kozaki, K., Imoto, I., Mogi, S., Omura, K., Inazawa, J. (2008) Exploration of tumor-suppressive MicroRNAs silenced by DNA hypermethilation in oral cancer. Cancer Res; 68 (32) 2094-2105. DOI: 10.1158/0008-5472.CAN-07-5194

Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and Methods, 4 (25), 402–408. DOI: 10.1006/meth.2001.1262

Luchs, A., & Pantaleão, C. (2010), Apoptose e modelos in vivo para estudo das moléculas relacionadas a este fenômeno, Revista Einstein, 8, 495-7. 10.1590/S1679-45082010RB1685

Marçola, M. Perfil circadiano da expressão de microRNAs em células progenitoras CD133+, Tese de Doutorado, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil, 2014.

Milner, J., & Diamond, M. (2017), Zika virus pathogenesis and tissue tropism, Cell Host Microbe. 21(16), 134-142. DOI: 10.1016/j.chom.2017.01.004

O'connell, R. M., Rao, D. S., Baltimore, D. (2012). Microwave regulation of inflammatory responses. Annu. Rev. Immunol, 30 (21), 295-312. DOI: 10.1146/annurev-immunol-020711-075013

Onorati, M., Li, Z., Liu, F., Sousa André, M. M, Nakagawa, N., Li, M., Dell’anno Maria, T., Gulden Forrest, O., Pochareddy, S., Tebbenkamp Andrew, T. N. (2016). Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Reports. 16 (4), 2576– 2592. DOI: 10.1016/j.celrep.2016.08.038

Park, J. k., Doseff, A. S. (2018), MicroRNAs Targeting Caspase-3 and -7 in PANC-1 Cells, 19, 1216-226.

Pauley, K. M., Chan, E. K. (2008). Microwaves and their emerging roles in immunology. Ann. NY Acad. Sci, 43 (11), 226-239.

Pereira A, S., Shitsuka D, M., Parreira F, J., Shitsuka R, (2018). Scientific research methodology. [eBook]. Santa Maria. Ed. UAB / NTE / UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa -Cientific a.pdf?sequence=1

Pfeffer, S. (2007). Micro RNA and viral infections in mammals. J Soc Biol, 4 (6), 377–384. DOI: 10.1051/jbio:2007908

Ricarte, J., Kimura, E. T. (2006). MicroRNAs: Nova Classe de Reguladores Gênicos Envolvidos na Função Endócrina e Câncer. Arq Bras Endocrinol Metab. 6 (50), 1102-1107. Search in: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-2730200600060

Souza, C. P. (2016). Perfil de expressão de microRNAs e seus alvos moleculares em carcinoma pulmonar. Tese de Doutorado, Bases Gerais da Cirurgia, Faculdade de Medicina, Universidade Paulista, São Paulo, Brasil.

Stark, A., Brennecke, J., Bushati, N., Russell, R. B., Cohen, S. M. (2005). Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell, 123 (6), 1133-1146. Search: https://linkinghub.elsevier.com/retrieve/pii/S0092867405012729

Tang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., Yao, B., Shin, J., Zhang, F., Lee Emily, M. (2016). Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell. 18 (5). 587–590. DOI: 10.1016/j.stem.2016.02.016

Umbach, J. L., & Cullen, B. R. (2009). The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev, 23 (10), 1151-1164. DOI: 10.1101/gad.1793309

Wong, T. S., Liu, X. B., Wong, B. Y. H., Rwn, N. G., Yuen, A. P. W., Wei, W. I. (2008). Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res, 14 (21) 2588-2592.

WHO (2009), World Health Organization, Zika Epidemiology Update.

Zhang, C. (2009). Novel Functions for small RNAmolecules. HHS Public Acess, 6 (11) 641-651. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593927/

Descargas

Publicado

13/12/2020

Cómo citar

FERREIRA, J. F. L. .; AMORIM, M. T. .; FRANCO NETO, W. F. .; LUNA, F. C. F. de .; MELO, K. F. L. de .; BORGES, G. A. L. .; ARAÚJO, A. P. S. .; HOLANDA, G. M. .; CASSEB, S. M. M. .; CRUZ, A. C. R. . La infección por el Vírus Zika en células humanas altera el perfil de expresión del miRNA-15 y la activación de caspasas apoptóticas. Research, Society and Development, [S. l.], v. 9, n. 12, p. e3991210699, 2020. DOI: 10.33448/rsd-v9i12.10699. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10699. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud