¿Alelopatía? ¡No sé! ¡Nunca vi! ¡Solo escuché sobre eso!
DOI:
https://doi.org/10.33448/rsd-v9i12.10873Palabras clave:
metabolismo secundario; Fitotoxicidad; Aleloquímicos; Mecanismos de acción.Resumen
La alelopatía es definida por la Sociedad Internacional de Alelopatía como la ciencia que estudia cualquier proceso que involucra esencialmente a los metabolitos secundarios producidos por plantas, algas, bacterias y hongos que influyen en el crecimiento y desarrollo de los sistemas agrícolas y biológicos, incluidos los efectos positivos y negativos. Sin embargo, varias dudas son evidentes en los nuevos investigadores del area, como el surgimiento y evolución de esta ciencia. De esta manera, recopilamos didácticamente información importante sobre la alelopatía, que se distribuye en (1) Alelopatía: Historia y definiciones, (2) Modo de acción de los aleloquímicos y (3) Naturaleza química de los aleloquímicos, con el fin de orientar la nueva investigadores y permitir el uso de esta información en el aula como recurso teórico.
Citas
Al Harun, M. A. Y., Johnson, J., & Robinson, R. W. (2015). The contribution of volatilization and exudation to the allelopathic phytotoxicity of invasive Chrysanthemoides monilifera subsp. monilifera (boneseed). Biological invasions, 17(12), 3609-3624.
Areco, V. A., Figueroa, S., Cosa, M. T., Dambolena, J. S., Zygadlo, J. A., & Zunino, M. P. (2014). Effect of pinene isomers on germination and growth of maize. Biochemical Systematics and Ecology, 55(s/n), 27-33.
Barkosky, R. R., & Einhellig, F. A. (2003). Allelopathic interference of plant-water relationships by para-hydroxybenzoic acid. Botanical Bulletin of Academia Sinica, 44(s/n), 53-58.
Baziramakenga, R., Leroux, G. D., Simard, R. R., & Nadeau, P. (1997). Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Canadian Journal of Botany, 75(3), 445-450.
Benchaa, S., Hazzit, M., & Abdelkrim, H. (2018). Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chemistry & biodiversity, 15(8), e1800202.
Buchanan, B. B.; et al. Biochemistry and molecular biology of plants. John Wiley & Sons. 2015.
Charoenying, P., Teerarak, M., & Laosinwattana, C. (2010). An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Scientia horticulturae, 125(3), 411-416.
Cheng, F., Cheng, Z., Meng, H., & Tang, X. (2016). The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression. Frontiers in plant science, 7(s/n), 1199.
Chowhan, N., Singh, H. P., Batish, D. R., & Kohli, R. K. (2011). Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiologiae Plantarum, 33(6), 2369-2376.
Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., & Quiles, J. L. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322-2335.
Coelho, É. M. P., Barbosa, M. C., Mito, M. S., Mantovanelli, G. C., Oliveira, R. S., & Ishii-Iwamoto, E. L. (2017). The activity of the antioxidant defense system of the weed species Senna obtusifolia L. and its resistance to allelochemical stress. Journal of chemical ecology, 43(7), 725-738.
Debnath, B., Singh, W. S., Das, M., Goswami, S., Singh, M. K., Maiti, D., & Manna, K. (2018). Role of plant alkaloids on human health: A review of biological activities. Materials today chemistry, 9(s/n), 56-72.
Duke, S. O. (2010) Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal, 25(1), 17-30.
Ferreira, A. G., & AQUILA, M. E. A. (2000). Alelopatia: uma área emergente da ecofisiologia. Revista Brasileira de Fisiologia Vegetal, 12(1), 175-204.
Gfeller, A., Glauser, G., Etter, C., Signarbieux, C., & Wirth, J. (2018). Fagopyrum esculentum alters its root exudation after Amaranthus retroflexus recognition and suppresses weed growth. Frontiers in Plant Science, 9(s/n), 50-62.
Gonzalez-Burgos, E., & Gómez-Serranillos, M. P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Current medicinal chemistry, 19(31), 5319-5341.
Huang, W., Hu, T., Chen, H., Wang, Q., Hu, H., Tu, L., & Jing, L. (2013). Impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings. Plant physiology and biochemistry, 70(s/n), 411-417.
Hussain, M. I., & Reigosa, M. J. (2017). Evaluation of photosynthetic performance and carbon isotope discrimination in perennial ryegrass (Lolium perenne L.) under allelochemicals stress. Ecotoxicology, 26(5), 613-624.
Jiao, X. L., Bi, X. B., & Gao, W. W. (2015). Allelopathic effect of p-coumaric acid on American ginseng and its physiological mechanism. Acta Ecol. Sinica, 35(s/n), 3006-3013.
Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology, 2(s/n), 377-392.
Kang, A., George, K. W., Wang, G., Baidoo, E., Keasling, J. D., & Lee, T. S. (2016). Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metabolic engineering, 34(s/n), 25-35.
Kato-Noguchi, H., Nakamura, K., Ohno, O., Suenaga, K., & Okuda, N. (2017). Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Journal of plant physiology, 213(s/n), 23-29.
Latif, S., G. (2017). Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research. Academic Press, 82 (s/n), 19-54.
Levitt, J., & Lovett, J. V. (1985). Alkaloids, antagonisms and allelopathy. Biological Agriculture & Horticulture, 2(4), 289-301.
Li, H. Q., Zhang, L. L., Jiang, X. W., & Liu, Q. Z. (2015). Allelopathic effects of phenolic acids on the growth and physiological characteristics of strawberry plants. Allelopathy Journal, 35(1), 61-75.
Li, Z. H., Wang, Q., Ruan, X., Pan, C. D., & Jiang, D. A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933-8952.
Lin, H. Y., Chang, T. C., & Chang, S. T. (2018). A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. Journal of traditional and complementary medicine, 8(4), 443-450.
Lovett, J. (2007). Hans Molisch'Legacy. Allelopathy Journal, 19(1), 49-55.
Mersie, W., & Singh, M. (1993). Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. Journal of chemical ecology, 19(7), 1293-1301.
Mushtaq, M. N., Sunohara, Y., & Matsumoto, H. (2013). Allelochemical L-DOPA induces quinoprotein adducts and inhibits NADH dehydrogenase activity and root growth of cucumber. Plant physiology and biochemistry, 70(s/n), 374-378.
Nakano, H., Nakajima, E., Fujii, Y., Yamada, K., Shigemori, H., & Hasegawa, K. (2003). Leaching of the allelopathic substance,-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant growth regulation, 40(1), 49-52.
Pinheiro, P. F., Costa, A. V., Alves, T. D. A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., & Fontes, M. M. P. (2015). Phytotoxicity and cytotoxicity of essential oil from leaves of Plectranthus amboinicus, carvacrol, and thymol in plant bioassays. Journal of agricultural and food chemistry, 63(41), 8981-8990.
Politycka, B., & Bednarski, W. (2004). Oxidative burst and lipoxygenase activity induced by hydroxycinnamic acids in cucumber roots. Allelopathy Journal, 14(2), 187-196.
Politycka, B., & Gmerek, J. (2008). Effects of ferulic and p-coumaric acids on the activity of hydrolytic enzymes and the growth of radicles in germinating seeds of cucumber and pea. Allelopathy Journal, 21(2), 227-237.
Reigosa, M. J., Pedrol, N., & González, L. (Eds.). (2006). Allelopathy: a physiological process with ecological implications. Springer Science & Business Media.
Rice, E. L. (2012). Allelopathy. Academic press.
Rice, E. L. (1984), Allelopathy. 2.ed. New York: Academic press, 422p.
Sartor, L. R., Adami, P. F., Chini, N., Martin, T. N., Marchese, J. A., & Soares, A. B. (2009). Alelopatia de acículas de Pinus taeda na germinação e no desenvolvimento de plântulas de Avena strigosa. Ciência Rural, 39(6), 1653-1659.
Schreiner, O., & Sullivan, M. X. (1909). Soil fatigue caused by organic compounds. Journal of Biological Chemistry, 6(1), 39-50.
Silva, E. R., Overbeck, G. E., & Soares, G. L. G. (2017). Something old, something new in allelopathy review: what grassland ecosystems tell us. Chemoecology, 27(6), 217-231.
Sodaeizadeh, H., Rafieiolhossaini, M., & Van Damme, P. (2010). Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Industrial Crops and Products, 31(2), 385-394.
Stupnicka-Rodzynkiewicz, E., Dabkowska, T., Stoklosa, A., Hura, T., Dubert, F., & Lepiarczyk, A. (2006). The effect of selected phenolic compounds on the initial growth of four weed species. Zeitschrift fur pflanzenkrankheiten und pflanzenschutz-sonderheft, 20(s/n), 479-486.
Suzuki, L. S., Zonetti, P. C., Ferrarese, M. L. L., & Ferrarese-Filho, O. (2008). Effects of ferulic acid on growth and lignification of conventional and glyphosate-resistant soybean. Allelopathy Journal, 21(1), 155-163.
Taban, A., Saharkhiz, M. J., & Hadian, J. (2013). Allelopathic potential of essential oils from four Satureja spp. Biological agriculture & horticulture, 29(4), 244-257.
Taiz, L.; Zeiger, E. (2017). Fisiologia Vegetal. Porto Alegre: Artmed, 5 ed., 820 p.
Teerarak, M., Laosinwattana, C., & Charoenying, P. (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresource Technology, 101(14), 5677-5684.
Tigre, R. C., Silva, N. H., Santos, M. G., Honda, N. K., Falcao, E. P. S., & Pereira, E. C. (2012). Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicology and environmental safety, 84(s/n), 125-132.
Weston, L. A., Ryan, P. R., & Watt, M. (2012). Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of experimental botany, 63(9), 3445-3454.
Willis, R. J. (2007). The history of allelopathy. Springer Science & Business Media.
Yan, Z. Q., Wang, D. D., Ding, L., Cui, H. Y., Jin, H., Yang, X. Y., & Qin, B. (2015). Mechanism of artemisinin phytotoxicity action: Induction of reactive oxygen species and cell death in lettuce seedlings. Plant Physiology and Biochemistry, 88(s/n), 53-59.
Yang, C. M., Lee, C. N., & Chou, C. H. (2002). Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Botanical Bulletin of Academia Sinica, 43(4), 299-304.
Zhang, Y., Wang, J., Tan, L., Cao, J., & Li, H. (2015). Effect of allelopathy on the competition and succession of Skeletonema costatum and Prorocentrum donghaiense. Marine Biology Research, 11(10), 1093-1099.
Zhang, Z. Z., Sun, Z. H., Chen, W. H., & Lin, W. X. (2013). Allelopathic effects of organic acid allelochemicals on melon. Acta Ecol Sinica, 33(s/n), 4591-4598.
Zheng, Y., & Li, M. (2018). Autotoxicity of phenolic acids in root exudates of Andrographis paniculata (Burm. f.) Nees. Allelopathy Journal, 45(2), 153-162.
Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: an update and review. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(5), 509-517.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 José Weverton Almeida-Bezerra; José Wellington Macêdo Viana; Viviane Bezerra da Silva; Adrielle Rodrigues Costa; Maria Haiele Nogueira da Costa; Marcos Aurélio Figueiredo dos Santos; Gledson Ferreira Macedo; Elvis Estilak Lima; Isabella Hevily Silva Torquato; Joice Layanne Guimarães Rodrigues ; Pedro Hudson Rodrigues Teixeira; João Paulo Camilo de Oliveira; Adriano Pereira Batista; Francisco Vivaldo Alves de Sousa; Crispiniano Macedo Pereira; Dennis Bezerra Correia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.