¿Alelopatía? ¡No sé! ¡Nunca vi! ¡Solo escuché sobre eso!

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10873

Palabras clave:

metabolismo secundario; Fitotoxicidad; Aleloquímicos; Mecanismos de acción.

Resumen

La alelopatía es definida por la Sociedad Internacional de Alelopatía como la ciencia que estudia cualquier proceso que involucra esencialmente a los metabolitos secundarios producidos por plantas, algas, bacterias y hongos que influyen en el crecimiento y desarrollo de los sistemas agrícolas y biológicos, incluidos los efectos positivos y negativos. Sin embargo, varias dudas son evidentes en los nuevos investigadores del area, como el surgimiento y evolución de esta ciencia. De esta manera, recopilamos didácticamente información importante sobre la alelopatía, que se distribuye en (1) Alelopatía: Historia y definiciones, (2) Modo de acción de los aleloquímicos y (3) Naturaleza química de los aleloquímicos, con el fin de orientar la nueva investigadores y permitir el uso de esta información en el aula como recurso teórico.

Citas

Al Harun, M. A. Y., Johnson, J., & Robinson, R. W. (2015). The contribution of volatilization and exudation to the allelopathic phytotoxicity of invasive Chrysanthemoides monilifera subsp. monilifera (boneseed). Biological invasions, 17(12), 3609-3624.

Areco, V. A., Figueroa, S., Cosa, M. T., Dambolena, J. S., Zygadlo, J. A., & Zunino, M. P. (2014). Effect of pinene isomers on germination and growth of maize. Biochemical Systematics and Ecology, 55(s/n), 27-33.

Barkosky, R. R., & Einhellig, F. A. (2003). Allelopathic interference of plant-water relationships by para-hydroxybenzoic acid. Botanical Bulletin of Academia Sinica, 44(s/n), 53-58.

Baziramakenga, R., Leroux, G. D., Simard, R. R., & Nadeau, P. (1997). Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Canadian Journal of Botany, 75(3), 445-450.

Benchaa, S., Hazzit, M., & Abdelkrim, H. (2018). Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chemistry & biodiversity, 15(8), e1800202.

Buchanan, B. B.; et al. Biochemistry and molecular biology of plants. John Wiley & Sons. 2015.

Charoenying, P., Teerarak, M., & Laosinwattana, C. (2010). An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Scientia horticulturae, 125(3), 411-416.

Cheng, F., Cheng, Z., Meng, H., & Tang, X. (2016). The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression. Frontiers in plant science, 7(s/n), 1199.

Chowhan, N., Singh, H. P., Batish, D. R., & Kohli, R. K. (2011). Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiologiae Plantarum, 33(6), 2369-2376.

Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., & Quiles, J. L. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322-2335.

Coelho, É. M. P., Barbosa, M. C., Mito, M. S., Mantovanelli, G. C., Oliveira, R. S., & Ishii-Iwamoto, E. L. (2017). The activity of the antioxidant defense system of the weed species Senna obtusifolia L. and its resistance to allelochemical stress. Journal of chemical ecology, 43(7), 725-738.

Debnath, B., Singh, W. S., Das, M., Goswami, S., Singh, M. K., Maiti, D., & Manna, K. (2018). Role of plant alkaloids on human health: A review of biological activities. Materials today chemistry, 9(s/n), 56-72.

Duke, S. O. (2010) Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal, 25(1), 17-30.

Ferreira, A. G., & AQUILA, M. E. A. (2000). Alelopatia: uma área emergente da ecofisiologia. Revista Brasileira de Fisiologia Vegetal, 12(1), 175-204.

Gfeller, A., Glauser, G., Etter, C., Signarbieux, C., & Wirth, J. (2018). Fagopyrum esculentum alters its root exudation after Amaranthus retroflexus recognition and suppresses weed growth. Frontiers in Plant Science, 9(s/n), 50-62.

Gonzalez-Burgos, E., & Gómez-Serranillos, M. P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Current medicinal chemistry, 19(31), 5319-5341.

Huang, W., Hu, T., Chen, H., Wang, Q., Hu, H., Tu, L., & Jing, L. (2013). Impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings. Plant physiology and biochemistry, 70(s/n), 411-417.

Hussain, M. I., & Reigosa, M. J. (2017). Evaluation of photosynthetic performance and carbon isotope discrimination in perennial ryegrass (Lolium perenne L.) under allelochemicals stress. Ecotoxicology, 26(5), 613-624.

Jiao, X. L., Bi, X. B., & Gao, W. W. (2015). Allelopathic effect of p-coumaric acid on American ginseng and its physiological mechanism. Acta Ecol. Sinica, 35(s/n), 3006-3013.

Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology, 2(s/n), 377-392.

Kang, A., George, K. W., Wang, G., Baidoo, E., Keasling, J. D., & Lee, T. S. (2016). Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metabolic engineering, 34(s/n), 25-35.

Kato-Noguchi, H., Nakamura, K., Ohno, O., Suenaga, K., & Okuda, N. (2017). Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Journal of plant physiology, 213(s/n), 23-29.

Latif, S., G. (2017). Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research. Academic Press, 82 (s/n), 19-54.

Levitt, J., & Lovett, J. V. (1985). Alkaloids, antagonisms and allelopathy. Biological Agriculture & Horticulture, 2(4), 289-301.

Li, H. Q., Zhang, L. L., Jiang, X. W., & Liu, Q. Z. (2015). Allelopathic effects of phenolic acids on the growth and physiological characteristics of strawberry plants. Allelopathy Journal, 35(1), 61-75.

Li, Z. H., Wang, Q., Ruan, X., Pan, C. D., & Jiang, D. A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933-8952.

Lin, H. Y., Chang, T. C., & Chang, S. T. (2018). A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. Journal of traditional and complementary medicine, 8(4), 443-450.

Lovett, J. (2007). Hans Molisch'Legacy. Allelopathy Journal, 19(1), 49-55.

Mersie, W., & Singh, M. (1993). Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. Journal of chemical ecology, 19(7), 1293-1301.

Mushtaq, M. N., Sunohara, Y., & Matsumoto, H. (2013). Allelochemical L-DOPA induces quinoprotein adducts and inhibits NADH dehydrogenase activity and root growth of cucumber. Plant physiology and biochemistry, 70(s/n), 374-378.

Nakano, H., Nakajima, E., Fujii, Y., Yamada, K., Shigemori, H., & Hasegawa, K. (2003). Leaching of the allelopathic substance,-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant growth regulation, 40(1), 49-52.

Pinheiro, P. F., Costa, A. V., Alves, T. D. A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., & Fontes, M. M. P. (2015). Phytotoxicity and cytotoxicity of essential oil from leaves of Plectranthus amboinicus, carvacrol, and thymol in plant bioassays. Journal of agricultural and food chemistry, 63(41), 8981-8990.

Politycka, B., & Bednarski, W. (2004). Oxidative burst and lipoxygenase activity induced by hydroxycinnamic acids in cucumber roots. Allelopathy Journal, 14(2), 187-196.

Politycka, B., & Gmerek, J. (2008). Effects of ferulic and p-coumaric acids on the activity of hydrolytic enzymes and the growth of radicles in germinating seeds of cucumber and pea. Allelopathy Journal, 21(2), 227-237.

Reigosa, M. J., Pedrol, N., & González, L. (Eds.). (2006). Allelopathy: a physiological process with ecological implications. Springer Science & Business Media.

Rice, E. L. (2012). Allelopathy. Academic press.

Rice, E. L. (1984), Allelopathy. 2.ed. New York: Academic press, 422p.

Sartor, L. R., Adami, P. F., Chini, N., Martin, T. N., Marchese, J. A., & Soares, A. B. (2009). Alelopatia de acículas de Pinus taeda na germinação e no desenvolvimento de plântulas de Avena strigosa. Ciência Rural, 39(6), 1653-1659.

Schreiner, O., & Sullivan, M. X. (1909). Soil fatigue caused by organic compounds. Journal of Biological Chemistry, 6(1), 39-50.

Silva, E. R., Overbeck, G. E., & Soares, G. L. G. (2017). Something old, something new in allelopathy review: what grassland ecosystems tell us. Chemoecology, 27(6), 217-231.

Sodaeizadeh, H., Rafieiolhossaini, M., & Van Damme, P. (2010). Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Industrial Crops and Products, 31(2), 385-394.

Stupnicka-Rodzynkiewicz, E., Dabkowska, T., Stoklosa, A., Hura, T., Dubert, F., & Lepiarczyk, A. (2006). The effect of selected phenolic compounds on the initial growth of four weed species. Zeitschrift fur pflanzenkrankheiten und pflanzenschutz-sonderheft, 20(s/n), 479-486.

Suzuki, L. S., Zonetti, P. C., Ferrarese, M. L. L., & Ferrarese-Filho, O. (2008). Effects of ferulic acid on growth and lignification of conventional and glyphosate-resistant soybean. Allelopathy Journal, 21(1), 155-163.

Taban, A., Saharkhiz, M. J., & Hadian, J. (2013). Allelopathic potential of essential oils from four Satureja spp. Biological agriculture & horticulture, 29(4), 244-257.

Taiz, L.; Zeiger, E. (2017). Fisiologia Vegetal. Porto Alegre: Artmed, 5 ed., 820 p.

Teerarak, M., Laosinwattana, C., & Charoenying, P. (2010). Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresource Technology, 101(14), 5677-5684.

Tigre, R. C., Silva, N. H., Santos, M. G., Honda, N. K., Falcao, E. P. S., & Pereira, E. C. (2012). Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicology and environmental safety, 84(s/n), 125-132.

Weston, L. A., Ryan, P. R., & Watt, M. (2012). Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of experimental botany, 63(9), 3445-3454.

Willis, R. J. (2007). The history of allelopathy. Springer Science & Business Media.

Yan, Z. Q., Wang, D. D., Ding, L., Cui, H. Y., Jin, H., Yang, X. Y., & Qin, B. (2015). Mechanism of artemisinin phytotoxicity action: Induction of reactive oxygen species and cell death in lettuce seedlings. Plant Physiology and Biochemistry, 88(s/n), 53-59.

Yang, C. M., Lee, C. N., & Chou, C. H. (2002). Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Botanical Bulletin of Academia Sinica, 43(4), 299-304.

Zhang, Y., Wang, J., Tan, L., Cao, J., & Li, H. (2015). Effect of allelopathy on the competition and succession of Skeletonema costatum and Prorocentrum donghaiense. Marine Biology Research, 11(10), 1093-1099.

Zhang, Z. Z., Sun, Z. H., Chen, W. H., & Lin, W. X. (2013). Allelopathic effects of organic acid allelochemicals on melon. Acta Ecol Sinica, 33(s/n), 4591-4598.

Zheng, Y., & Li, M. (2018). Autotoxicity of phenolic acids in root exudates of Andrographis paniculata (Burm. f.) Nees. Allelopathy Journal, 45(2), 153-162.

Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: an update and review. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(5), 509-517.

Publicado

19/12/2020

Cómo citar

ALMEIDA-BEZERRA, J. W.; VIANA, J. W. M. .; SILVA, V. B. da .; COSTA, A. R. .; COSTA, M. H. N. da .; SANTOS, M. A. F. dos .; MACEDO, G. F. .; LIMA, E. E. .; TORQUATO, I. H. S. .; RODRIGUES , J. L. G. .; TEIXEIRA, P. H. R. .; OLIVEIRA, J. P. C. de .; BATISTA, A. P. .; SOUSA, F. V. A. de .; PEREIRA, C. M. .; CORREIA, D. B. . ¿Alelopatía? ¡No sé! ¡Nunca vi! ¡Solo escuché sobre eso!. Research, Society and Development, [S. l.], v. 9, n. 12, p. e19391210873, 2020. DOI: 10.33448/rsd-v9i12.10873. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10873. Acesso em: 30 jun. 2024.

Número

Sección

Comunicación Breve