Evaluación del almidón de yuca como materia prima según las características de los gránulos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10879

Palabras clave:

Yuca; Cultivar; Gránulo; Almidón.

Resumen

este estudio, se evaluaron las características fisicoquímicas de almidones extraídos de diez cultivares diferentes de yuca, cultivados en diferentes tipos de suelo. Existen variaciones significativas en las proporciones de almidón dañado durante la extracción, incluso en muestras del mismo cultivar. El contenido de amilosa difiere entre cultivares e incluso dentro de las mismas cosechas en diferentes suelos (que van del 20,00 al 24,07%). Según el tipo de suelo, los almidones presentaron diferentes valores para el índice de cristalinidad. Este resultado indica la necesidad de caracterizar los almidones, incluso cuando proceden del mismo cultivar. Los resultados obtenidos se pueden utilizar como una herramienta de apoyo para mejorar la yuca, optimizando el proceso de selección y mantenimiento de un banco genético. El análisis quimiométrico (PCAs y racimos), permite distinguir cultivares de acuerdo a sus características físico-químicas y peculiaridades funcionales, sugiriendo sus diferentes usos.

Biografía del autor/a

Daiana Cardoso de Oliveira, Universidade Federal de Santa Catarina

Chemical and Food Engineering Department

Helayne Aparecida Maieves, Universidade Federal de Santa Catarina

Chemical and Food Engineering Department

Cláudia Bernardo, Universidade Federal de Santa Catarina

Food Science and Technology Department

Ismael Casagrande Bellettini, Universidade Federal de Santa Catarina

Chemistry Department

Citas

Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35 (2), 215-236. https://doi.org/10.1590/1678-457X.6749

AOAC (2005). Official Methods of Analysis of the AOAC. (18th ed.), Gaithersburg, M.D, USA.

Benevides, D. M. G., Costa, B. J. P., Almeida, H. S. A. de, Melo, E. C. C. de, Macedo, R. C. da S., Lemos, J. F., Leite, R. H. de L., & Soares, K. M. de P. (2020). Coating based on cassava starch and chitosan in maintenance of vacuum packaged shrimp quality. Research, Society and Development, 9(8), e275985714. https://doi.org/10.33448/rsd-v9i8.5714

Blagbrough, I. S., Bayoumi, S. A. L., Rowan, M. G., & Beeching, J. R. (2010). Cassava: an appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry, 71(17-18), 1940-1951. http://dx.doi.org/10.1016/j.phytochem.2010.09.001

Chatakanonda, P., Chinachoti, P., Sriroth, K., Piyachomkwan, K., Chotineeranat, S., & Tang, H. (2003). The influence of time and conditions of harvest on the functional behaviour of cassava starch - a proton NMR relaxation study. Carbohydrate Polymers, 53, 233-240. https://10.1016/S0144-8617(03)00047-X

Cheethan, N. W. H., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: a X-ray powder diffraction study. Carbohydrate Polymers, 36, 277-284.

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (1999) Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de solos. Embrapa Solos, Rio de Janeiro, RJ, Brazil, p. 412.

Hayakawa, K., Tanaka, K., Nakamura, T., Endo, S., & Hoshino, T. (1997). Quality characteristics of hexaploid wheat (Triticum aestivum L.): properties of starch gelatinization and retrogradation. Cereal Chemistry, 74, 576-580.

Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253-267. https://doi.org/10.1016/S0144-8617(00)00260-5

Hu, P., Fan, X., Lin, L., Wang, J., Zhang, L., & Wei, C. (2018). Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch. Food Science and Technology, 38, 84-90. https://doi.org/10.1590/1678-457x.35016

Karkalas, J., Tester, R. F., & Morrison, W. R. (1992). Properties of damaged starch granules. I. Comparison of a micromethod for the enzymic determination of damaged starch with the standard AACC and Farrand methods. Journal of Cereal Science, 16, 237-251. https://doi.org/10.1016/S0733-5210(09)80087-8

Ladeira, T.; Souza, H. & Pena, R. (2013). Characterization of the roots and starches of three cassava cultivars. International Journal of Agricultural Science Research, 2, 12-20.

Leach, H. W., McCowen, L. D., & Schoch, T. J. (1959). Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chemistry, 36, 534-544.

Liu, Q. Understanding starches and their role in foods. In: Cui SW (ed). Food Carbohydrates: Chemistry, Physical Properties and Applications. Boca Raton: CRC Press. 309-305 p., 2005.

Maieves, H. A., Oliveira, D. C., Frescura, J. R., & Amante, E. R. (2011). Selection of cultivars for minimization of waste and of water consumption in cassava starch production. Industrial Crops and Products, 33, 224–228. https://doi.org/10.1016/j.indcrop.2010.10.017

Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75, 453-460. https://doi.org/10.1016/j.jfoodeng.2005.04.031.

Marcon, M. J. A., Kurtz, D. J., Raguzzoni, J. C. Delgadillo, I., Maraschin, M., Soldi, V., Reginatto, V., & Amante, E. R. (2009). Expansion properties of sour cassava starch (polvilho azedo): variables related to its practical application in bakery. Starch/Stärke, 61, 716 – 726. https://doi.org/10.1002/star.200900132.

McCready, R. M., & Hassid, W. F. (1943). The separation and quantitative estimation of amilose and amilopectina in potato starch. Journal of American Chemical Society, 65, 1154 -1157.

Megazyme. Starch Damage; Assay Procedure, K-SDAM 02, 2008.

Morrison, W. R., Scott, D. C., & Karkalas, J. (1986). Variation in the composition and physical properties of barley starches. Starch/ Starke, 38, 374-379. https://doi.org/10.1002/star.19860381104.

Qin, Y., Liu, Y., Yong, H., Liu, H., ZHANG, X., & Liu, J. (2019). Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules, 134(1), 80-90. https://doi.org/10.1016/j.ijbiomac.2019.05.029

Sabaté-Rolland, A., Sánchez, T., Buléon, A., Colonna, P., Jaillais, B., Ceballos, H., & Dufour, D. (2012). Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocolloids, 27, 161-174. https://doi.org/10.1016/j.foodhyd.2011.07.008

Sandstedt, R. M., & Mattern, P. J. (1960). Damaged starch. Quantitative determination in flour. Cereal Chemistry, 37, 379-390.

Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers, 60, 529-538. https://doi.org/10.1016/j.carbpol.2005.03.004.

Versino, F., & García, M. A. (2014). Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products, 58, 305-314. https://doi.org/10.1016/j.indcrop.2014.04.040

Wang, L. Z., & White, P. J. (1994). Structure and properties of amylose, amylopectin, and intermediate materials of oat starches. Cereal Chemistry, 71, 263-268.

Williams, P. C., Kuzina, F. D., & Hlynka, I. A. (1970). Rapid colorimetric procedure for estimating the amylase content of starch on flours. Cereal Chemistry, 47, 412-420.

Whistler, R. L. E., & Paschal, E. F. (1965). Starch: Chemistry and Technology. Fundamental Aspects. Academic Press, N. Y. and London. 1, 579.

Descargas

Publicado

14/12/2020

Cómo citar

OLIVEIRA, D. C. de; MAIEVES, H. A.; BERNARDO, C.; BELLETTINI, I. C.; REMOR, B. B.; MORESCO, R.; AMANTE, E. R. Evaluación del almidón de yuca como materia prima según las características de los gránulos. Research, Society and Development, [S. l.], v. 9, n. 12, p. e8491210879, 2020. DOI: 10.33448/rsd-v9i12.10879. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10879. Acesso em: 3 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas