Modelos logísticos y factores de riesgo asociados a los pacientes de COVID-19, Brasil

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.11028

Palabras clave:

COVID-19; Regresión; Comorbilidades; Diagnóstico.

Resumen

Objetivo: A través de un modelo de regresión logística, se dibujó el perfil clínico de los individuos afectados. Métodos: Utilizamos los datos del número de casos confirmados de COVID-19, disponibles a través de SEPLAG-PE, en asociación con SES y ATI, desde el 12 de marzo de 2020 hasta el 13 de julio de 2020. Resultados: El grupo con mayor frecuencia de muertes pertenece al grupo de edad de más de 50 años, lo que resulta estadísticamente significativo en relación con la evolución de la enfermedad. Entre los pacientes que murieron, la mayoría presentaba diabetes, hipertensión y otras comorbilidades, siendo estadísticamente significativo en relación con la evolución del cuadro clínico de COVID-19. Conclusión: Los resultados proporcionan evaluaciones significativas para la comprensión de los posibles factores de riesgo relacionados con las muertes por COVID-19, convirtiéndose en una herramienta útil en la toma de decisiones para los profesionales de la salud.

Citas

Abede, T. H. (2020). The Derivation and Choice of Appropriate Test Statistic (Z, t, F and Chi-Square Test) in Research Methodology. Mathematics Letters, 5(3), 33. https://doi.org/10.11648/j.ml.20190503.11

Agranonik, M. (2005). Técnicas de diagnóstico aplicadas ao modelo de regressão logística. Monografia de graduação, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.

Agresti, A. (2007). Logistic regression. An Introduction to Categorical Data Analysis, Second 7 Edition, John Wiley & Sons, Inc, New Jersey, 99-136.

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

Al-Ghamdi, A. S. (2002). Using logistic regression to estimate the influence of accident factors on accident severity. AccidentAnalysis&Prevention, 34(6), 729-741. https://doi.org/10.1016/j.mayocp.2020.05.014

Alkhouli, M., Nanjundappa, A., Bates, M. C.; & Bhatt, D. L. (2020, August). Sex Differences in Case Fatality Rate of COVID-19: Insights From a Multinational Registry. In Mayo Clinic Proceedings (Vol. 95, No. 8, pp. 1613-1620). Mayo Foundation for Medical Education and Research. https://doi.org/10.1016/j.mayocp.2020.05.014

Bura, E., & Gastwirth, J. L. (2001). The binary regression quantile plot: assessing the importance of predictors in binary regression visually. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 43(1), 5-21. https://doi.org/10.1002/1521-4036(200102)43:1<5::AID-BIMJ5>3.0.CO;2-6

Cruz, A. A., Rosa, A. J. B., Anchieta, B. D. O., Dantas, B., Costa, C. D. A., Bronzi, e. D. S., Moura, J. P., Dantas, R. P. S., Bucco Júnior, R. L. S., Ribeiro, J. S., & Pinto, C. E. M (2020). Considerações sintomáticas e medicamentosas a respeito do novo coronavírus: uma revisão da literatura sobre farmacologia, efeitos adversos, fisiopatogenia e formas de tratamento do covid-19.

de Freitas, J. R., dos Santos, A. L. P., Silva, J. E., Cunha, A. L. X., Falcão, A. P. S. T., Moreira, G. R., Pimentel, R. M. M., & Cunha Filho, M. (2020). Análise multivariada da qualidade do sono em algumas comunidades do Sertão do Pajeú-PE. Journal of Environmental Analysis and Progress, 5(3), 263-273. https://doi.org/10.24221/jeap.5.3.2020.2630.263-273

de Freitas, J. R., de Almeida Ferreira, D. S., de Lima, F. M., Nascimento, G. I. L. A., da Silva Alves, D. A. N., Gomes, D. A., ... & de Araújo Filho, R. N. (2020). SARS-CoV-2 effective breeding number estimation in Vitória de Santo Antão/PE, Brazil. Research, Society and Development, 9(9), e794997922-e794997922. https://dx.doi.org/10.33448/rsd-v9i9.7922

de Oliveira, E. B., & Schreiner, H. G. (1987). Caracterização e análise estatística de experimentos de agrossilvicultura. Embrapa Florestas-Artigo em periódico indexado (ALICE).

Dietz, W., & Santos‐Burgoa, C. (2020). Obesity and its Implications for COVID‐19 Mortality. Obesity, 28(6), 1005-1005. https://doi.org/10.1002/oby.22818

Emiliano, P. C., Vivanco, M. J., & De Menezes, F. S. (2014). Information criteria: How do they behave in different models?. Computational Statistics & Data Analysis, 69, 141-153. https://doi.org/10.1016/j.csda.2013.07.032

Governo do Estado de Pernambuco. (2010). Base de Dados do Estado de Pernambuco.

http://www.bde.pe.gov.br/visualizacao/Visualizacao_formato2.aspx?CodInformacao=546&Cod=3

Guan, W. J., Liang, W. H., Zhao, Y., Liang, H. R., Chen, Z. S., Li, Y. M., Liu, X. Q., Chen, R. C., Tang, C. L., Wang, T., Ou, C. Q., Li, L., Chen, P. Y., Sang, L., Wang, W., Li, J. F., Li, C. C., Ou, L. M., Cheng, B., … He, J. X. (2020). Comorbidity and its impact on 1,590 patients with Covid-19 in China: A nationwide analysis. European Respiratory Journal, 55(5). https://doi.org/10.1183/13993003.00547-2020

Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., … Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032

Hosmer, D. W., Lemeshow, S. (1989). Applied logistic regression. New York: Jhon Wiley & Son.

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression, [S.1.]: John Wiley & Sons, pp. 398.

Jones, C. M., & Athanasiou, T. (2005). Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. The Annals of thoracic surgery, 79(1), 16-20. https://doi.org/10.1016/j.athoracsur.2004.09.040

Kassir, R. (2020). Risk of COVID‐19 for patients with obesity. Obesity Reviews, 21(6). https://doi.org/10.1111/obr.13034

Kim, H. Y. (2017). Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restorative dentistry & endodontics, 42(2), 152-155.

Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A.-E., Humphrey, C. D., Shieh, W.-J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., … Anderson, L. J. (2003). A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 348(20), 1953–1966. https://doi.org/10.1056/NEJMoa030781

Levorato, C. D., de Mello, L. M., da Silva, A. S., & Nunes, A. A. (2014). Fatores associados à procura por serviços de saúde numa perspectiva relacional de gênero. Ciencia e Saude Coletiva, 19(4), 1263–1274. https://doi.org/10.1590/1413-81232014194.01242013

Macedo, Y. M., Ornellas, J. L., & Bomfim, H. F. do. (2020). COVID – 19 NO BRASIL: o que se espera para população subalternizada? Revista Encantar, 2(0), 1–10.

Miller, N. (2019). A Chi-Square Analysis of Leadership Tendencies Using Holland Codes. Journal of Integrative Behavioral Science, 1(1).

Ministério da Saúde do Brasil. (2020). Boletins Epidemiológicos. https://coronavirus.saude.gov.br/boletins-epidemiologicos

Misumi, I., Starmer, J., Uchimura, T., Beck, M. A., Magnuson, T., & Whitmire, J. K. (2019). Obesity expands a distinct population of T cells in adipose tissue and increases vulnerability to infection. Cell reports, 27(2), 514-524. https://doi.org/10.1016/j.celrep.2019.03.030

Nelder, J. A., & Baker, R. J. (1979). Generalized linear models. [S.l.]: Wiley Online Library.

Paula, G. A. (2004). Modelos de regressão: com apoio computacional, pp. 28-55. São Paulo: IME-USP.

Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175. https://doi.org/10.1080/14786440009463897

Peng, Y. D. , Meng, K., Guan, H. Q., Leng, L., Zhu, R. R., Wang, B. Y., He, M. A., Cheng, L. X., Huang, K., & Zeng, Q. T.(2020). Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua xin xue guan bing za zhi, 48, E004-E004. https://doi.org/10.3760/cma.j.cn112148-20200220-00105

Pereira, P. A. (2008). Data mining e o seu potencial para a gestão do conhecimento em educação. Revista Portuguesa De InvestigaçãoEducacional, (7), 107-125. https://doi.org/10.34632/investigacaoeducacional.2008.3303

Pitchon, R. R., Alvim, C. G., Andrade, C. R., Lasmar, L. M., Cruz, A. A., & Reis, A. P. (2018). Mortalidade por asma em crianças e adolescentes: uma causa de morte quase sempre evitável. Rev Med Minas Gerais, 28(Supl 6), S280607.

Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., Barnaby, D. P., Becker, L. B., Chelico, J. D., Cohen, S. L., Cookingham, J., Coppa, K., Diefenbach, M. A., Dominello, A. J., Duer-Hefele, J., Falzon, L., Gitlin, J., Hajizadeh, N., Harvin, T. G., … Zanos, T. P. (2020). Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA, 323(20), 2052. https://doi.org/10.1001/jama.2020.6775

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461-464.

Secretaria Estadual de Saúde de Minas Gerais. (2020). Painel de Monitoramento dos Casos. http://coronavirus.saude.mg.gov.br/painel

Secretaria Estadual de Saúde de Pernambuco. (2020). Secretaria Estadual de Saúde de Pernambuco. http://portal.saude.pe.gov.br/

Secretaria Estadual de Saúde de São Paulo. (2020). SEADE. https://www.seade.gov.br/coronavirus/

Silva, Anderson W. C. Cunha, A. A., Alves, G. C., Corona, R. A., Dias, C. A. G. D. M., Nassiri, R., …, & Araújo, M. H. M. (2020). Perfil epidemiológico e determinante social do COVID-19 em Macapá, Amapá, Amazônia, Brasil. Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano 05, Ed. 04, Vol. 04, pp. 05-27. Abril de 2020. ISSN: 2448-0959.

Sociedade Brasileira de Infectologia. (2020). Informativo da sociedade brasileira de infectologia: primeiro caso confirmado de doença pelo novo coronavírus. www.infectologia.org.br

Stefan, N., Birkenfeld, A. L., Schulze, M. B., & Ludwig, D. S. (2020). Obesity and impaired metabolic health in patients with COVID-19. Nature Reviews Endocrinology, 1-2. https://doi.org/10.1038/s41574-020-0364-6

Strabelli, T. M. V., & Uip, D. E. (2020). COVID-19 e o Coração. Arquivos Brasileiros de Cardiologia, 114(4), 598-600. https://doi.org/10.36660/abc.20200209

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615

Szklo AS. (2020). Associação entre fumar e progressão para complicações respiratórias graves em pacientes com Covid-19. RevBrasCancerol, 66(2), e-03974. https://doi.org/10.32635/2176-9745.RBC.2020v66n2.974

Szklo, A. S., Iglesias, R. M., de Souza, M. C., Szklo, M., Cavalcante, T. M., & de Almeida, L. M. (2017). Understanding the relationship between sales of legal cigarettes and deaths: A case-study in Brazil. Preventive medicine, 94, 55-59. https://doi.org/10.1016/j.ypmed.2016.11.008

Vaz, I. C. O. G., Cassimiro, R. D., & Soares, V. (2020). Influência de doenças cardiovasculares e obesidade no quadro clínico de pacientes com a covid-19. Anais da Mostra Acadêmica do Curso de Fisioterapia, 8(1), 108-114.

Wei, Y., Lu, Y., Xia, L., Yuan, X., Li, G., Li, X., Liu, L., Liu, W., Zhou, P., Wang, C.-Y., & Zhang, H. (2020). Analysis of 2019 novel coronavirus infection and clinical characteristics of outpatients: An epidemiological study from a fever clinic in Wuhan, China. Journal of Medical Virology, 0–2. http://dx.doi.org/10.2139/ssrn.3539646

World Health Organization. (2020b). https://www.who.int/

Williams, C. J., Lee, S. S., Fisher, R. A., &Dickerman, L. H. (1999). A comparison of statistical methods for prenatal screening for Down syndrome. Applied Stochastic Models in Business and Industry, 15(2), 89-101. https://doi.org/10.1002/(SICI)1526-4025(199904/06)15:2<89::AID-ASMB366>3.0.CO;2-K

Williamson, E. J., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E., Curtis, H. J., Mehrkar, A., Evans, D., Inglesby, P., Cockburn, J., McDonald, H. I., MacKenna, B., Tomlinson, L., Douglas, I. J., T. Rentsch, C. T., Mathur, R., Wong, A. Y. S., Grieve, R., Harrison, D., Forbes, H., Schultze, A., Croker, R., Parry, J., Hester, F., Harper, S., Perera, R., Evans, S. J. W., Smeeth, L., & Goldacre, B. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature, 584(7821), 430-436. https://doi.org/10.1038/s41586-020-2521-4

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama, 323(13), 1239-1242. https://doi.org/10.1001/jama.2020.2648.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Publicado

18/12/2020

Cómo citar

FREITAS, J. R. de; PEREIRA, M. M. de A. .; SILVA, L. A. P. da .; PESSOA, R. V. S.; SANTANA, L. I. T. de .; SILVA, J. M. da; LIMA, C. R. O. de P.; ALBUQUERQUE, C. R. .; CUNHA FILHO, M. . Modelos logísticos y factores de riesgo asociados a los pacientes de COVID-19, Brasil. Research, Society and Development, [S. l.], v. 9, n. 12, p. e17391211028, 2020. DOI: 10.33448/rsd-v9i12.11028. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11028. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud