Perfil químico de harina de sorgo extruido del genotipo BRS 305 con paper spray

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.11414

Palabras clave:

Cereal; Sorghum bicolor; PS/MS.

Resumen

El objetivo de este trabajo fue determinar los constituyentes químicos de la harina de sorgo extruido (HSE) del genotipo BRS 305 mediante espectrometría de masas con ionización por paper spray (PS/MS), método que presenta alta precisión, sensibilidad y baja costo de operación. Se prepararon extractos metanólicos a partir de la muestra de harina de sorgo extruida y posteriormente se evaluaron en modos de ionización positiva y negativa. En el modo de ionización negativa fue posible identificar 21 compuestos, comprendiendo las clases de flavonoides (48,0%), fenilpropanoides (28,0%), ácidos orgánicos (9,0%), taninos condensados, ácidos grasos y carbohidratos (5, 0% cada uno). Adicionalmente en el modo de ionización positiva fue posible identificar 9 compuestos, pertenecientes a las clases de flavonoides (34.0%), carbohidratos (22.0%), aminoácidos (22.0%), ácidos grasos y terpenoides (11.0% cada uno). La espectrometría de masas por paper spray demostró ser una técnica eficiente para la obtención rápida y eficiente de huellas dactilares de la muestra (HSE) evaluada, pudiendo identificar un total de treinta compuestos químicos, reforzando las propiedades nutricionales y bioactivas atribuidas a algunos genotipos de sorgo como el BRS 305.

Citas

Albuquerque, C. J. B., Rocha, G. R, Brant, R. S. & Mendes, M. C. (2010). Espaçamento reduzido para o cultivo do sorgo granífero no sistema irrigado e em sequeiro, Pesquisa Aplicada & Agrotecnologia, Guarapuava, 3, 1-16.

Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199-1221. DOI: https://doi.org/10.1016/j.phytochem.2004.04.001.

Barros, L., Dueñas, M., Dias, M. I., Sousa, M. J., Santos-Buelga, C., & Ferreira, I. C. F. R. (2013). Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chemistry, 136(1), 1–8. https://doi.org/10.1016/j.foodchem.2012.07.107.

Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S. & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. ScienceDirect, 10, 485 – 498. DOI: http://dx.doi.org/10.1016/j.jff.2014.07.016.

Campelo, F. A., Henriques, G. S., Simeone, M. L. F., Queiroz, V. A. V., Silva, M. R., Augusti, R., Melo, J. O. F., Lacerda, I. C. A. & Araújo, R. L. B. (2020). Study of thermoplastic extrusion and its impact on the chemical and nutritional characteristics in two sorghum genotypes SC 319 and BRS 332. Journal of the Brazilian Chemical Society, 31, 788-802. https://doi.org/10.21577/0103-5053.20190243.

Cardoso, L. M., Pinheiro, S. S., Carvalho, C. W. P., Queiroz, V. A. V., Menezes, C. B., Moreira, A. V. B., Barros, F. A. R., Awika, J. M., Martino, H. S. D. & Sant’ana, H. M. P. (2015). Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. Journal of Cereal Science, 65, 220-226. 10.1016/j.jcs.2015.06.015.

Chen, G, Li, X, Saleri, F. & Guo, M. (2016). Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities. Molecules, 21(10), 1275. https://doi.org/10.3390/molecules21101275.

Correia, V. T. V., Dangelis, D. F., Rodrigues, C. G., Amante, P. R., Queiroz, V. A. V., Ferreira, A. A. & Fante, C. A. (2020). Physico-chemical and technological characterization of extruded sorghum flour of the genotype BRS 305. Research, Society and Development, 9, e115984963. http://dx.doi.org/10.33448/rsd-v9i8.4963.

Dicko, M. H., Gruppen, H., Traore, A., Voragen, A. G. J. & Van Berkel, W. J. H. (2006). Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. African Journal of Biotechnology, 5 (5), 384-395.

Dykes, L., Peterson, G. C., Rooney, W. L. & Rooney, L. W. (2011). Flavonoid composition of lemon-yellow sorghum genotypes. Food Chemistry, 128 (1), 173- 179. 10.1016/j.foodchem.2011.03.020.

Deng, J., & Yang, Y. (2013). Chemical fingerprint analysis for quality assessment and control of Bansha herbal tea using paper spray mass spectrometry. Analytica Chimica Acta, 785, 82–90. https://doi.org/10.1016/j.aca.2013.04.056.

Devil, P. S., Saravanakumar, M. & Mohandas, S. (2012). The effects of temperature and pH on stalility of antocyanins from red sorghum (sorghum bicolor) bran. African Journal of Food Science, 6(24), 567-573.

Garrett, R., Rezende, C. M., & Ifa, D. R. (2013). Coffee origin discrimination by paper spray mass spectrometry and direct coffee spray analysis. Analytical Methods, 5(21), 5944. https://doi.org/10.1039/c3ay41247d.

Geera, B., Ojwang, L. O. & Awika, J. M. (2012). New highly stable dimeric 3-deoxyanthocyanidin pigments from sorghum bicolor leaf sheath. Journal of Food Science, 77(5), 566-72. 10.1111/j.1750-3841.2012.02668.x.

Guo, Y., Gu, Z., Liu, X., Liu, J., Ma, M., Chen, B. & Wang, L. (2017). Rapid Analysis of Corni fructus Using Paper Spray‐Mass Spectrometry. Phytochemical Analysis, 28(4), 344-350. 10.1002/pca.2681.

Iswaldi, I., Arráez-Román, D., Rodríguez-Medina, I., Beltrán-Debón, R., Joven, J., Segura-Carretero, A. & Fernández-Gutiérrez, A. (2011). Identification of phenolic compounds in aqueous and ethanolic rooibos extracts (Aspalathus linearis) by HPLC-ESI-MS (TOF/IT). Analytical and Bioanalytical Chemistry, 400(10), 3643-54. 10.1007/s00216-011-4998-z.

Kajdžanoska, M, Gjamovski, V. & Stefova, M. (2010). HPLC-DAD-ESI-msn identification of phenolic compounds in cultivated strawberries from Macedonia. Macedonian Journal of Chemistry and Chemical Engineering, 29(2), 181–194.

Kang, J., Price, W., Ashton, J. & Tapsell, L. and Johnson, S. (2016). Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chemistry, 211, 215-226. 10.1016/j.foodchem.2016.05.052.

Kaufman, R. C., Herald, T. J., Bean, S. R., Wilson, J. D. & Tuinstra, M. R. (2012). Variability in tannin content, chemistry and activity in a diverse group of tannin containing sorghum cultivars. Journal of the Science of Food and Agriculture, 93(5), 1233-1241. https://doi.org/10.1002/jsfa.5890.

Liu, Y., Feng, S., Song, L., He, G., Chen, M., & Huang, D. (2013). Secondary Metabolites in Durian Seeds: Oligomeric Proanthocyanidins. Molecules, 18, 14172–14185.

Mariano, A. P. X., Ramos, A. L. C. C., Augusti, R., Araújo, R. L. B., Melo, J. O. F. (2020). Analysis of the chemical profile of cerrado pear fixed compounds by mass spectrometry with paper spray and volatile ionization by SPME-HS CG-MS. Research, Society and Development, 9, e949998219-22. http://dx.doi.org/10.33448/rsd-v9i9.8219.

Martino, H. S. D., Tomaz, P. A., Moraes, E. A., Conceição, L. L., Oliveira, D. S., Queiroz, V. A. V., Rodrigues, J. A. S., Pirozi, M. R., Pinheiro-Sant'ana, H. M., & Ribeiro, S. M. R. (2012). Chemical characterization and size distribution of sorghum genotypes for human consumption. Revista Instituto Adolfo Lutz, 71(2), 337-344.

Mazzotti, F., Di Donna, L., Taverna, D., Nardi, M., Aiello, D., Napoli, A., & Sindona, G. (2013). Evaluation of dialdehydic anti-inflammatory active principles in extra-virgin olive oil by reactive paper spray mass spectrometry. International Journal of Mass Spectrometry, 352, 87–91. https://doi.org/10.1016/j.ijms.2013.07.012.

Minighin, E. C., Anastácio, L. R., Melo, J. O. F. & Labanca, R. A. (2020). Açai (Euterpe oleracea) e suas contribuições para alcance da ingestão diária aceitável de ácidos graxos essenciais. Research, Society and Development, 9, e760986116. http://dx.doi.org/10.33448/rsd-v9i8.6116.

Moraes, E. A., Natal, D. I. G., Queiroz, V. A. V., Schaffert, R. E., Cecon, P. R., Paula, S. O., Benjamim, L. A., Ribeiro, S. M. R., & Martino, H. S. D. (2012). Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Research International, 49, 553-559. https://doi.org/10.1016/j.foodres.2012.07.029.

Oliveira, C. T., Ramos, A. L. C. C., Mendonca, H. O. P., Consenza, G. P., Silva, M. R., Fernandes, C., Augusti, R., Melo, J. O. F., Ferreira, A. V. M. & Araujo, R. L. B. (2020). Quantification of 6-gingerol, metabolomic analysis by paper spray mass spectrometry and determination of antioxidant activity of ginger rhizomes (Zingiber officinale). Research, Society and Development, 9, e366984822. https://doi.org/10.33448/rsd-v9i8.4822.

Oliveira-Júnior, A. H., Ramos, A. L. C. C., Guedes, M. N. S., Fagundes, M. C. P., Augusti, R. & Melo, J. O. F. (2020). Chemical profile and bioprospecting of cocoa beans analyzed by paper spray mass spectrometry. Research, Society and Development, 9, e975986882. https://doi.org/10.33448/rsd-v9i8.6882.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UAB/NTE/UFSM. https://repositorio.ufsm .br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pontieri, P., Mamone, G., Caro, S., Tuinstra, M. R., Roemer, E., Okot, J., De Vita, P., Ficco, D. B. M., Alifano, P., Pignone, D., Massardo, D. R. & Del Giudice, L. (2013). Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. Journal of Agricultural and Food Chemistry, 61, 2565-2571. https://doi.org/10.1021/jf304882k.

Przybylska-Balcerek, A., Frankowski, J. & Stuper-Szablewska, K. (2019). Bioactive compounds in sorghum. European Food Research and Technology, 245(5), 1075-1080. 10.1007/s00217-018-3207-0.

Queiroz, V. A. V., Moraes, E. M., Schaffert, R. E., Moreira, A. V., Ribeiro, S. M. R., & Martino, H. S. D. (2011). Potencial funcional e tecnologia de processamento do sorgo [Sorghum bicolor (L.) Moench], para alimentação humana. Revista Brasileira de Milho e Sorgo, 10(3), 180-195. https://doi.org/10.18512/1980-6477/rbms.v10n3p180-195.

Queiroz, V. A. V., Silva, C. S, Menezes, C. B., Schaffert, R. E., Guimarães, F. F. M., Guimarães, L. J. M., Guimarães, P. E. O. & Tardin, F. D. (2015). Nutritional composition of sorghum [Sorghum bicolor (L.) Moench] genotypes cultivated without and with water stress. Journal of Cereal Science, 65, 103-111. https://doi.org/10.1016/j.jcs.2015.06.018.

Queiroz, V. A. V., Oliveira, K. G., Paiva, C. L., Carlos, L. A., De Menezes, C. B., Barros, F. A. R., Pinheiro-Sant’ana, H. M. & Anunciação, P. (2018). Retention of some flavones and flavanones in flour, grain and bran of sorghum during storage. Revista Brasileira de Milho e Sorgo, 17(3), 522-534. https://doi.org/10.18512/1980-6477/rbms.v17n3p522-534.

Ramos, A. L. C. C., Mendes, D. D., Silva, M. R., Augusti, R., Melo, J. O. F., Araújo, R. L. B. & Lacerda, I. C. A. (2020). Chemical profile of Eugenia brasiliensis (Grumixama) pulp by PS/MS paper spray and SPME-GC / MS solid-phase microextraction. Research, Society and Development, 9, e318974008. http://dx.doi.org/10.33448/rsd-v9i7.4008.

Ren, Y., Chiang, S., Zhang, W., Wang, X., Lin, Z. & Ouyang, Z. (2016). Paper-capillary spray for direct mass spectrometry analysis of biofluid samples. Analytical and Bioanalytical Chemistry, 408(5), 1385-1390. 10.1007/s00216-015-9129-9.

Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. http://dx.doi.org/10.1016/j.foodchem.2010.01.037.

Silva, M., Freitas, L., Souza, A., Araújo, R., Lacerda, I., Pereira, H., Augusti, R. & Melo, J. (2019). Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) using Paper Spray Mass Spectrometry. Journal of the Brazilian Chemical Society, 30, 1034-1044. https://doi.org/10.21577/0103-5053.20190002.

Silva, V., Arquelau, P., Silva, M., Augusti, R., Melo, J. & Fante, C. (2020). Use of paper spray-mass spectrometry to determine the chemical profile of ripe banana peel flour and evaluation of its physicochemical and antioxidant properties. Quimica Nova, 43, 579-585. https://doi.org/10.21577/0100-4042.20170521.

Silva, V. D. M., Macedo, M. C. C., Santos, A. N., Silva, M. R., Augusti, R., Lacerda, I. C. A., Melo, J. O. F. & Fante, C. A. (2020b). Bioactive activities and chemical profile characterization using paper spray mass spectrometry of extracts of Lindl. leaves. Rapid Communications in Mass Spectrometry, 34, e8883. https://doi.org/10.1002/rcm.8883.

Teixeira, N. C., Queiroz, V. A. V., Rocha, M. C., Amorim, A. C. P., Soares, T. O., Monteiro, M. A. M., Menezes, C. B., Schaffert, R. E., Garcia, M. A. V. T., & Junqueira, R. G. (2016). Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chemistry, 197, 291-296. https://doi.org/10.1016/j.foodchem.2015.10.099.

Vargas-Solorzano, J. W., Carvalho, C. W. P., Takeiti, C. Y., Ascheri, J. L. R., & Queiroz, V. A. V. (2014). Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research Internation, 55, 37-44. DOI: https://doi.org/10.1016/j.foodres.2013.10.023.

VASAT: Virtual Academy for the Semi-Arid Tropics. Uses and nutricional features of sorghum.<http://www.icrisat.orglvasatllearning_resources/ crops/sorghum/sorghum_prodpractices/htmllm112/index.html>.

Wang, J, Jia, Z, Zhang, Z, Wang, Y, Liu, X, Wang, L& Lin, R. (2017). Analysis of Chemical Constituents of Melastoma dodecandrum Lour. by UPLC-ESI-Q-Exactive Focus-MS/MS. Molecules, 22(3), 476. https://doi.org/10.3390/molecules22030476.

Wu, Y., Li, X., Xiang, W., Zhu, C., Lin, Z., Wu, Y., Li, J., Pandravada, S., Ridder, D. D., Bai, G., Wang, M. L., Trick, H. N., Bean, S. R., Tuinstra, M. R., Tesso, T. T. & Yu, J. (2012). Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proceedings of the National Academy of Sciences, 109(26), 10281-10286. https://doi.org/10.1073/pnas.1201700109.

Yang, L., Allred, K. F., Geera, B., Allred, C. D. & Awika, J. M. (2012). Sorghum phenolics demonstrate estrogenic action and Induce apoptosis in nonmalignant colonocytes. Nutrition and Cancer, 64(3), 419-427. 10.1080/01635581.2012.657333.

Publicado

21/01/2021

Cómo citar

CORREIA, V. T. da V.; D’ANGELIS, D. F. .; MACEDO, M. C. C. .; RAMOS, A. L. C. C. .; VIEIRA, A. L. S. .; QUEIROZ, V. A. V. .; AUGUSTI, R. .; FERREIRA, A. A.; FANTE, C. A. .; MELO, J. O. F. . Perfil químico de harina de sorgo extruido del genotipo BRS 305 con paper spray. Research, Society and Development, [S. l.], v. 10, n. 1, p. e40710111414, 2021. DOI: 10.33448/rsd-v10i1.11414. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11414. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas