Respuesta diferencial a diferentes clases de herbicidas: Tradescantia pallida (Rose) D. R. Hunt var. purpurea Boom como planta modelo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.11452

Palabras clave:

Control químico; Toxicidad; Fisiología; Metabolismo; Commelinaceae.

Resumen

Tradescantia pallida es una planta ornamental que se encuentra ampliamente en parterres y jardines urbanos. Sin embargo, la información sobre las respuestas fisiológicas y bioquímicas de esta planta ornamental a los herbicidas son escasas. Por lo tanto, este trabajo tuvo como objetivo evaluar la toxicidad, capacidad de rebrote, crecimiento, fisiología y alteraciones en el metabolismo de T. pallida luego de la aplicación de diferentes clases de herbicidas.  Los tratamientos consistieron en la aspersión de los herbicidas: atrazina (1,500 g ha-1), diquat (300 g ha-1), carfentrazona (10 g ha-1), glifosato (1,500 g ha-1) y 2,4-D (1.050 g ha-1) sobre T. pallida.  Las plantas rociadas solo con agua representaron el grupo de control. Las evaluaciones se realizaron 5 días después de la aplicación de los herbicidas. Se evaluó toxicidad visual e índice de rebrote, fluorescencia de clorofila a, contenido de clorofila (a, b y a + b), carotenoides y prolina. El herbicida 2,4-D no actuó sobre la planta, pero pudo haber producido un efecto genotóxico. El glifosato aumentó significativamente el contenido de prolina y generó un índice de crecimiento cero, lo que muestra la sensibilidad de la planta al herbicida. La carfentrazona no fue completamente efectiva en el control de T. pallida, que tampoco mostró sensibilidad a la atrazina, pero sí una alta sensibilidad al diquat, a pesar del bajo contenido de prolina encontrado. Las diferentes clases de herbicidas actúan de manera diferente en términos de toxicidad, rebrote, fisiología y metabolismo de T. pallida, variables útiles para investigar la posible tolerancia de las plantas a las diferentes clases de herbicidas.

Citas

Ali S. & Honermeier B. (2016). Post emergence herbicides influence the leaf yield, chlorophyll fluorescence and phenolic compounds of artichoke (Cynara cardunculus L.). Scientia Horticulturae, 203, 216-223.

Amarante Junior, O. P. & Santos, T. C. R. (2002). Glifosato: propriedades, toxicidade, usos e legislação. Química Nova, 25 (4), 589-593.

Andrade Júnior, S. J., Santos Júnior, J. C. S., Oliveira, J. L., Cerqueira, E. M. M. & Meireles, J. R. C. (2008). Micronúcleos em tétrades de Tradescantia pallida (Rose) Hunt. cv. purpurea Boom: alterações genéticas decorrentes de poluição aérea urbana. Acta Scientiarum Biological Sciences, 30 (3), 295-301.

Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.

Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and soil, 39 (1), 205-207.

Caverzan, A., Piasecki, C., Chavarria, G., Stewart, C. N., Jr. & Vargas, L. (2019). Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. International Journal of Molecular Sciences, 20, 1086.

Christoffoleti, P. J., Borges, A., Nicolai, M., Carvalho, S. J. P., López-Ovejero, R. F. & Monquero, P. A. (2006). Carfentrazone-ethyl aplicado em pós-emergência para o controle de Ipomea spp. e Commelina benghalensis na cultura da cana-de-açúcar. Planta Daninha, 24 (1), 83-90.

Christoffoleti, P. J., Victoria Filho, R. & Silva, C. D. (1994). Resistência de plantas daninhas aos herbicidas. Planta Daninha, 12, 13-20.

Cvikrová, M., Gemperlová, L., Martincová, O. & Vanková, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry, 73, 7-15.

Dan, H. A., Procópio, S. O., Barroso, A. L., Dan, L. G. M., Oliveira Neto, A. M. & Guerra, N. (2011). Controle de plantas voluntárias de soja com herbicidas utilizados em milho. Agrária, 6 (2), 253- 257.

Dayan, F. E. & Zaccaro, M. L. D. M. (2012). Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 102, 189-97.

Duarte, A. P., Silva, A. C. & Deuber, R. (2007). Plantas infestantes em lavouras de milho safrinha, sob diferentes manejos, no médio Paranapanema. Planta Daninha, 25 (2), 285-291.

Durigon, M. R., Camera, A. S., Cechin, J., Vargas, L. & Chavarria, G. (2019). Does spraying of atrazine on triazine-resistant canola hybrid impair photosynthetic processes? Planta Daninha, 37, e019190367.

Equipe Estatcamp. (2014). Estatcamp - Consultoria em estatística e qualidade. Software Action. São Carlos - SP, <http://www.portalaction.combr/>.

Ferreira, D. F. (2011). Sisvar: a computer statistic analysis system. Ciência e Agrotecnologia, 35 (6), 1039-1042.

Filippou, P., Bouchagier, P., Skotti, E. & Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1-10.

Foyer, C. H. & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875.

Gao, Y., Fang, J., Du, M., Fang, J., Jiang,W. & Jiang, Z. (2017). Response of the eelgrass (Zostera marina L.) to the combined effects of high temperatures and the herbicide, atrazine. Aquatic Botany, 142, 41–47.

Gao, Y., Fang, J., Li, W., Wang, X., Li, F., Du, M., Fang, J., Lin, F., Jiang, W. & Jiang, Z. (2019). Effects of atrazine on the physiology, sexual reproduction, and metabolism of eelgrass (Zostera marina L.). Aquatic Botany, 153, 8–14.

Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stresses tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

Hassannejad, S., Lotfi, R., Ghafarbi, S.P., Oukarroum, A., Abbasi, A., Kalaji, H. M. & Rastogi, A. (2020). Early Identification of Herbicide Modes of Action by the Use of Chlorophyll Fluorescence Measurements. Plants, 9, 529.

Hemaprabha, G., Simon S., Lavanya, D.L., Sajitha, B. & Venkataramana, S. (2013). Evaluation of drought tolerance potential of elite genotypes and progenies of sugarcane (Saccharum sp. hybrids). Sugar Technology, 15 (1), 9-16.

Hunt, D. R. (1975). The Reunion of Setcreasea and Separotheca with Tradescantia American Commelinaceae: I. Kew Bulletin, 30 (3), 443-58.

Jervekani, M.T., Karimmojeni, H. & Razmjoo, J. (2020). Effects of light-dependent herbicides on growth and physiology of Salvia officinalis, Planta Daninha, 38:e020223839.

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V. & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 102.

Karam, D. & Oliveira, M. F. (2007). Seletividade de herbicidas na cultura do milho. Sete Lagoas - MG: Embrapa Milho e Sorgo, (Circular Técnica, 98).

Kirsten, H. L., Cruz, K. L., Alvim, S. & Souza, L. A. (2020). Aspectos da biologia floral de Tradescantia pallida (Commelinaceae). Unisanta BioScience, 9(5), 119-131.

Kreslavski V. D., Zorina A. A., Los D. A., Fomina I. R., Allakhverdiev S. I. (2013) Molecular Mechanisms of Stress Resistance of Photosynthetic Machinery. In: Rout G., Das A. (eds) Molecular Stress Physiology of Plants. Springer, India.

Langaro, A. C., Agostinetto, D., Oliveira, C., Silva, J. D. G. & Bruno, M. S. (2016). Biochemical and physiological changes in rice plants due to application of herbicides. Planta Daninha 34 (2), 277-289.

Langaro, A. C., Agostinetto, D., Ruchel, Q., Garcia, J. R. & Perboni, L. T. (2017). Oxidative stress caused by the use of preemergent herbicides in rice crops. Revista Ciência Agronômica, 48 (2), 358-364.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.

Linu, C. & Girija, T. (2020). Physiological response of rice to herbicide application, Indian Journal of Weed Science, 52(3):270–275.

Lytle, J. S. & Lytle, T. F. (1998). Atrazine effects on estuarine macrophytes Spartina alterniflora and Juncus roemerianus. Environmental Toxicology and Chemistry, 17, 1972–1978.

Machado, R. F., Barros, A. C. S. A., Zimmer, P. D. & Amaral, A. S. (2006). Reflexos do mecanismo de ação de herbicidas na qualidade fisiológica de sementes e na atividade enzimática em plântulas de arroz. Revista Brasileira de Sementes, 28 (3), 151-160.

Maxwell, K., & Johnson, G. N. (2000). Chorophyll fluorescence: a practical guide. Journal of Experimental Botany, 1(345), 659–668.

Meireles, J. R. C. & Cerqueira, E. M. M. (2011). Use of the Micronucleus Test on Tradescantia (Trad-MCN) to Evaluate the Genotoxic Effects of Air Pollution. In: Moldoveanu, A. M. (Ed.). Air pollution: new developments. Rijeka - HR: InTechOpen.

Menegazzo, R. F., Bortolucci, W. C., Oliveira, H. L. M., Menegazzo, A. W., Gonçalves, J. E., Fernandez, C. M. M., Gazim, Z. C. & Lopes, A. D. (2020) Chemical composition of Tradescantia pallida (Rose) D.R. Hunt var. purpurea Boom (Commelinaceae) essential oil, Natural Product Research, DOI: 10.1080/14786419.2020.1765341.

Molinari, H. B. C., Marur, C. J., Daros, E., de Campos, M. K. F., de Carvalho, J. F. R. P., Filho, J. C. B., Pereira, L. F. P. & Viera, L. G. E. (2007). Evaluation of the stress-induce production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, 130 (2), 218-229.

Neves, T., Foloni, L. L. & Pitelli, R. A. (2002). Controle químico do aguapé (Eichhornia crassipes). Planta Daninha, 20, 89-97.

Paiva, E. A. S., Isaias, R. M. S., Vale, F. H. A. & Queiroz, C. G. S. (2003). The influence of light intensity on anatomical structure and pigment contents of Tradescantia pallida (Rose) Hunt. cv. purpurea Boom (Commelinaceae) leaves. Brazilian Archives of Biology and Technology, 46 (4), 617-624.

Paporisch, A. & Rubin, B. (2017). Isoxadifen safening mechanism in sweet corn genotypes with differential response to P450-metabolized herbicides. Pesticide Biochemistry and Physiology, 138, 22–28.

Pavan, G. B. (2018). Manejo de capim-amargoso perenizado e tolerante a glyphosate com herbicidas associados ou não a 2,4-D sal de dimetilamina e 2,4-D choline. Dissertação (Mestrado em Ciências – Fitotecnia) – Universidade de São Paulo / Escola Superior de Agricultura Luiz de Queiroz, Piracicaba – SP.

Pitelli, R. A., Bisigatto, A. T., Kawaguchi, I. & Pitelli, R. L. C. M. (2011). Doses e horário de aplicação do Diquat no controle de Eichhornia crassipes. Planta Daninha, 29 (2), 269-277.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia de Pesquisa Científica. In Metodologia da Pesquisa Científica. UFSM, NTE.

Rodrigues, B. N. & Almeida, F. S. (2005). Guia de herbicidas. (5a ed.), Londrina - PR: Grafmarke,

Roman, E. S., Vargas, L. & Ribeiro, M. C. F. (2005). Efeito do teor de umidade do solo na seletividade e na Eficiência de carfentrazone-ethyl no controle de plantas daninhas na cultura de soja. Revista Brasileira de Herbicidas, 4 (2), 114-122.

Ronchi, C. P., Silva, A. A., Ferreira, L. R., Miranda, G. V. & Terra, A. A. (2002). Carfentrazone-ethyl, isolado e associado a duas formulações de glyphosate no controle de duas espécies de trapoeraba. Planta Daninha, 20 (1), 103-113.

Serciloto, C. M., Carvalho, M. E. A. & Castro, P. R. C. (2014). Mitigation of glyphosate side effects on non-target plants: use of different agrochemicals as protectants in common bean plants. Ambiência, 10, 615–623.

Shih, N., Lin, D., Wang, C. & Wang, C. (2018). A Paraquat Tolerance Mutant in Rice (Oryza sativa L.) Is Controlled by Maternal Inheritance. American Journal of Plant Sciences, 9, 2086-2099.

Song, N .H., Yin, X. L., Chen, G. F. & Yang, H. (2007). Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere, 68 (9), 1779-1787.

Sousa, C.P., Farias, M.E., Schock, A.A. & Bacarin, M.A. (2014). Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide. Acta Physiologiae Plantarum, 36 (11), 3051-62.

Souza, C. P. (2015). Investigação da toxicidade, citotoxicidade e genotoxicidade de uma formulação comercial de 2,4-D (diclorofenoxiacético) utilizando os organismos testes Allium cepa e Tradescantia pallida. Dissertação (Mestrado em Ciências Biológicas) – Universidade Estadual Paulista, Rio Claro – SP.

Sposito, J. C. V., Francisco, L. F. V. & Grisolia A. B. (2017). Effectiveness of the Trad-MCN assay for the evaluation of atmospheric contaminants in Brazilian regions. Ambiente e Água - An Interdisciplinary Journal of Applied Science, 12(3):500–511.

Streit, N. M., Canterle, L. P., Canto, M. W. & Hecktheuer, L. H. H. (2005). As clorofilas. Ciencia Rural, 35, 748–755.

Sun, L., Xu, H., Hao, H., An, S., Lu, C., Wu, R. & Su,W. (2019). Effects of bensulfuron-methyl residue on photosynthesis and chlorophyll fluorescence in leaves of cucumber seedlings. PLoS ONE, 14, e0215486.

Taiz, L., Zeiger, E., Moller, I. & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. (6a ed.), Porto Alegre: Artmed.

Velini, E. D., Osipe, R. & Gazziero, D. L. P. (1995). Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD).

Verbruggen, N. & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35 (4), 753-759.

Volf, M. R., Machado, F. G., Locatelli, R., Lima, V. M. M., Gheno, E. A., Mendes, R. R. & Procópio, S. O. (2017). Controle de Murdannia nudiflora em pós colheita da soja. Revista Brasileira de Herbicidas, 16 (1), 11-19.

Wang, Q., Que, X., Zheng, R., Pang, Z., Li & Xiao, B. (2015). Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environmental Science and Pollution Research, 22, 9646–9657.

Werlang, R. C. & Silva, A. A. (2002). Interação de glyphosate com carfentrazone-ethyl. Planta Daninha, 20 (1), 93-102.

Wolf, F. T. (1977). Effects of chemical agents in inhibition of chlorophyll synthesis and chloroplast development in higher plants. The Botanical Review, 43, 395–425.

Yanniccari, M., Istilart, C., Giménez, D. O. & Castro, A. M. (2012). Effects of glyphosate on the movement of assimilates of two Lolium perenne L. populations with differential herbicide sensitivity. Environmental and Experimental Botany, 82, 14–19.

Zabelin, A. A., Neverov, K. V., Krasnovsky, A. A. Jr., Shkuropatova, V. A., Shuvalov, V. A., & Shkuropatov, A. Y. (2016). Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1857 (6), 782–788.

Publicado

03/01/2021

Cómo citar

MENEGAZZO, R. F. .; RICKLI, M. E. .; SCANAVACCA, J. . .; LIMA, J. D. de; SILVEIRA, A. C. da .; MENEGAZZO, A. W. .; SOUZA, S. G. H. de .; LOPES, A. D. Respuesta diferencial a diferentes clases de herbicidas: Tradescantia pallida (Rose) D. R. Hunt var. purpurea Boom como planta modelo. Research, Society and Development, [S. l.], v. 10, n. 1, p. e6910111452, 2021. DOI: 10.33448/rsd-v10i1.11452. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11452. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas