Efecto de la coadministración de curcumina y piperina sobre los niveles de lípidos en sangre y el riesgo cardiovascular: una revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v10i1.11682Palabras clave:
Alcaloide de piperidina; Compuesto fenólico; Dislipidemia; Riesgo cardiovascular.Resumen
Algunas especies de plantas tienen potencial medicinal en la aterosclerosis y otras enfermedades coronarias. La curcumina (CUR) es un compuesto fenólico de color amarillo, extraído de los rizomas de Curcuma longa L. y utilizado principalmente como antiinflamatorio, antioxidante y anticancerígeno. La piperina (PIP) es un alcaloide de los frutos y semillas de Piper nigrum L. y Piper longum L. Tiene varias actividades farmacológicas, incluidas las propiedades antioxidantes e inmunomoduladoras. PIP también aumenta la absorción de nutrientes. Esta revisión tiene como objetivo investigar el efecto de la coadministración de CUR y PIP sobre el perfil lipídico y los eventos cardiovasculares, a partir de estudios en animales y humanos. Este trabajo se llevó a cabo en las principales bases de investigación científica. Entre las 4.992 referencias encontradas, inicialmente se eligieron 2.004 artículos para lectura parcial y 15 de ellos cumplían todos los criterios de selección para lectura completa. La coadministración de CUR y PIP generalmente demostró efectos positivos sobre el perfil lipídico en animales y humanos, reduciendo el colesterol total, triglicéridos y LP(a) y aumentando el HDL-c. Aunque no se ha realizado ningún ensayo clínico a largo plazo para investigar el efecto de la coadministración de CUR y PIP en eventos cardiovasculares, la reducción de glucosa, AST y ALP y el aumento de CAT y SOD se han registrado como marcadores séricos secundarios para evitar el riesgo cardiovascular. Por lo tanto, los estudios generalmente informan que la coadministración de CUR y PIP muestra eficacia para reducir los lípidos séricos. El efecto sobre la prevención de eventos cardiovasculares al reducir el riesgo cardiovascular carece de evidencia directa.
Citas
Abou-Elkhair, R., Ahmed, H. A., & Selim, S. (2014). Effects of Black Pepper (Piper Nigrum), Turmeric Powder (Curcuma Longa) and Coriander Seeds (Coriandrum Sativum) and Their Combinations as Feed Additives on Growth Performance, Carcass Traits, Some Blood Parameters and Humoral Immune Response of Broiler Chickens. Asian-Australas. J. Anim. Sci, 27(6):847-854. doi:10.5713/ajas.2013.13644
Aguiar, C., Alegria, E., Bonadonna, R.C., Catapano, A.L., Cosentino, F., Elisaf, M., Farnier, M., Ferrières, J., Filardi, P.P., Hancu, N., Kayikcioglu, M., Mello e Silva, A., Millan, J., Reiner, Z., Tokgozoglu, L., Valensi, P., Viigimaa, M, Vrablik, M., Zambon, A., Zamorano, J.L. (2015). A review of the evidence on reducing macrovascular risk in patients with atherogenic dyslipidaemia: a report from an expert consensus meeting on the role of fenofibrate-statin combination therapy. Atheroscler Suppl, 19:1-12. 10.1016/S1567-5688(15)30001-5
Ahmad, N. (2012). Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac J Trop Med, S: 1945-53. 10.1.1.474.3674
Akbarian, A., Golian, A., Kermanshahi, A.G., Moradi, S. (2012). Influence of turmeric rhizome and black pepper on blood constituents and performance of broiler chickens. Afr. J. Biotechnol, 11(34):8606-8611. 10.5897/AJB11.3318
Alwi, I., Santoso, T., Suyono, S., Sutrisna, B., Suyatna, F.D., Kresno, S.B., Ernie, S. (2008). The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med Indones, 40(4): 201-210
Anand, P., Kunnumakkara, A. B., Newman, R. A., Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Mol Pharm, 4:807-818. doi:10.1021/mp700113r
Arcaro, C. A., Gutierres, V. O., Assis, R. P., Moreira, T. F., Costa, P. I., Baviera, A. M., Brunetti, I. L. (2014). Piperine, a Natural Bioenhancer, Nullifies the Antidiabetic and Antioxidant Activities of Curcumin in Streptozotocin-Diabetic Rats. PLoS ONE, 9(12):e113993.10.1371/journal.pone.0113993
Atal, N., & Bedi, K. (2010). Bioenhancers: Revolutionary concept to market. J. Ayurveda Integr Med, 1(2): 96-99. 10.4103/0975-9476.65073
Banerji, A., Chakrabarti, J., Mitra, A., & Chatterjee, A. (2004). Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells. Cancer Lett, 211:235-242.
Barbalho, S. M., Bechara, M. D., Quesada, K., Gabaldi, M. R., Goulart, R. A., Tofano, R. J., & Gasparini, R. G. (2015). Síndrome metabólica, aterosclerose e inflamação: tríade indissociável? J Vasc Bras, 14(4):319-327. 10.1590/1677-5449.04315
Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol, 16(12): 727–744. 10.1038/s41569-019-0227-9
Baum, L., &Ng, A. (2004). Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimer’s Dis, 6(4):367–377. 10.3233/jad-2004-6403
Best, L., Elliott, A.C., Brown, P.D. (2007). Curcumin induces electrical activity in rat pancreatic beta-cells by activating the volume-regulated anion channel. Biochem Pharmacol, 73(11),1768–1775.10.1016/j.bcp.2007.02.006
Burgos-Morón, E., Calderón-Montaño, J. M., Salvador, J., Robles, A., & López-Lázaro, M. (2010). The dark side of curcumin. Int. J. Cancer, 126(7):1771-1775. 10.1002/ijc.24967
Chakraborty, M., Bhattacharjee, A., Kamath, J.V. (2017). Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian J Pharmacol, 49(1):65–70. 10.4103/0253-7613.201015
Chen, A., & Zheng, S. (2008). Curcumin inhibits connective tissue growth factor gene expression in activated hepatic stellate cells in vitro by blocking NF‐κB and ERK signalling. Br J Pharmacol, 153(3):557‐567. 10.1038/sj.bjp.0707542
GBD, Contributors to the incidence and prevalence of GBD diseases and injuries 2017 (2018) Global, regional and national incidence, prevalence and years of living with 354 diseases and injuries in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of diseases Study 2017. The Lancet 392(10159), 1789-1858
Dieberger, A., Rooij, S. R., Korosi, A., &Vrijkotte, T. G. M. (2018). Maternal lipid concentrations during early pregnancy and eating behavior and energy intake in the offspring. Nutrientes, 10:1026. 10.3390/nu10081026
Duangjai, A., Ingkaninan, K., Praputbut, S., &Limpeanchob, N. (2013). Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins. J. Nat Med. 67(2):303-310. 10.1007/s11418-012-0682-7
Egger, M., & Smith, G. D. (1997). Meta-Analysis. Potentials and promise. BMJ, 315(7119):1371-1374. 10.1136/bmj.315.7119.1371
Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr, 139(5): 919–925.10.3945/jn.108.100966
Filho, D. B. F., Paranhos, R., Júnior, J. A. S., Rocha, E. C., & Alves, D. P. (2014). O que é, para que serve e como se faz uma meta-análise? Teoria & Pesquisa: Revista de Ciência Política, 23(2):205-228
Fujiwara, H., Hosokawa, M., Zhou, X., Fujimoto, S., Fukuda, K., Toyoda, K., Nishi, Y., Fujita, Y., Yamada, K., Yamada, Y., Seino, Y., &Inagaki, N. (2008). Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Res Clin Pract, 80(2):185-191. doi:10.1016/j.diabres.2007.12.004
Galkina, E., & Ley, K. (2009). Mecanismos imunológicos e inflamatórios da aterosclerose. Annu. Rev. Immunol, 27:165-197
Graham, A. (2009). Curcumin adds spice to the debate: lipid metabolism in liver disease. Br J Pharmacol, 157(8):1352‐1353. 10.1111/j.1476-5381.2009.00335.x
Gondim, F. M. L., & Souza, B. E. S. de (2021) The use of laser therapy in the prevention and treatment of oral mucositis: a literature review. Research, Society and Development, [S. l.], 10(1): e5910110149. 10.33448/rsd-v10i1.10149
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane Handbook for Systematic Reviews of Interventions. (2th ed.),, John Wiley and Sons. 728p.
Hlavačková, L., Janegová, A., Uličná, O., Janega, P., Černá, A., & Babál, P. (2011). Spice up the hypertension diet - curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutr. Metab, 8(72):1-10.10.1186/1743-7075-8-72
Kang, Q., & Chen, A. (2009a). Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology, 150:5384-5394. 10.1210/en.2009-0517
Kang, Q., & Chen, A. (2009b). Curcumin suppresses expression of low‐ density lipoprotein (LDL) receptor, leading to the inhibition of LDL‐induced activation of hepatic stellate cells. Br J Pharmacol, 157(8):1354‐1367. 10.1111/j.1476-5381.2009.00261
Li, Y., Li, M., Wu, S., & Tian, Y. (2015). Combination of curcumin and piperine prevents formation of gallstones in C57BL6 mice fed on lithogenic diet: whether NPC1L1/SREBP2 participates in this process? Lipids Health Dis, 14(100):1-8. 10.1186/s12944-015-0106-2
Meghana, K., Sanjeev, G., & Ramesh, B. (2007). Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: A prophylactic and protective role. Eur J Pharmacol, 577(1-3):183–191. 10.1016/j.ejphar.2007.09.002
Miyazawa, T., Nakagawa, K., Kim, S. H., Thomas, M. J., Paul, L., Zingg, J-M., Dolnikowski, G. G., Roberts, S. B., Kimura, F., Miyazawa, T., Azzi, A., & Meydani, M. (2018). Curcumin and piperine supplementation of obese mice under caloric restriction modulates body fat and interleukin-1β. Nutr. Metab, 15(12):1-9. 10.1186/s12986-018-0250-6
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Medicine, 3(2): 123-130. doi:10.1016/j.jclinepi.2009.06.005
Moohebati, M., Yazdandoust, S., Sahebkar, A., Mazidi, M., Sharghi-Shahri, Z., Ferns, G., & Ghayour-Mobarhan, M. (2014). Investigation of the effect of short-term supplementation with curcuminoids on circulating small dense low-density lipoprotein concentrations in obese dyslipidemic subjects: A randomized double-blind placebo-controlled cross-over trial. ARYA Atheroscler, 10(5):280-286
Nascimento, T. C. F., Casa, D. M., Dalmolin, L. F., Mattos, A. C., Khalil, N. M., & Mainardes, R. M. (2012). Development and Validation of an HPLC Method Using Fluorescence Detection for the Quantitative Determination of Curcumin in PLGA and PLGA-PEG Nanoparticles. Curr. Pharm. Anal, 8(4): 324-333. 10.2174/157341212803341654
Oliveira, G., Mendes, R. T., & Boccaletto, E. M. A. (2009). Alimentação, Atividade Física e Qualidade de Vida. Campinas: Ipês Editorial, 1(5): 39-46
Panahi, Y., Khalili, N., Hosseini, M. S., Abbasinazari, M., & Sahebkar, A. (2014). Lipid-modifying effects of adjunctive therapy with curcuminoids—piperine combination in patients with metabolic syndrome: Results of a randomized controlled trial. Complement. Ther. Med, 22:851-857. 10.1016/j.ctim.2014.07.006
Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Karimian, M. S., Majeed, M., & Sahebka, A. (2016). Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacol, 25(1):25-31. 10.1007/s10787-016-0301-4.
Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Reiner, Z., Majeed, M., & Sahebkar, A. (2017). Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med, 33:1-5. 10.1016/j.ctim.2017.05.006
Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L.E., Majeed, M., & Sahebkar. A. (2018). Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res, 68(7):403-409. 10.1055/s-0044-101752
Panahi, Y., Valizadegan, G., Ahamdi, N., Ganjali, S., Majeed. M., & Sahebkar, A. (2019). Curcuminoids plus piperine improve nonalcoholic fatty liver disease: A clinical trial. J Cell Biochem, 1-8. 10.1002/jcb.28877
Patil, T. N., & Srinivasan, M. (1971). Hypocholesterolaemic effect of curcumin in induced hypocholesterolaemic rats. Indian J. Exp. Biol, 9:167-169. doi:0.4162/nrp.2010.4.3.191
Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Scientific research methodology. UAB / NTE / UFSM.
Piyachaturawat, P., Glinsukon, T., & Toskulkao, C. (1983). Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett, 16(3–4):351–359. 10.1016/0378-4274(83)90198-4
Reiner, Z. (2013). Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: a clinical update. Nutr. Metabol. Cardiovasc. Dis. NMCD, 23(9):799-807. 10.1016/j.numecd.2013.05.002
Rudnik, L. A. C., Farago, P. V., Budel, J. M., Lyra, A., Barboza, F. M., Klein, T., Kanunfre, C. C., Nadal, J. M., Bandéca, M. C., Raman, W., Novatski, A., Loguércio, A. D., Zanin, S. M. W. (2020). Co-loaded curcumin and methotrexate nanocapsules enhance cytotoxicity against non-small-cell lung cancer cells. Molecules. 25: 1913. 10.3390/molecules25081913
Seo, K. I., Choi, M. S., Jung, U. J., Kim, H. J., Yeo, J., Jeon, S. M., & Lee, M. K. (2008). Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res, 52(9):995–1004. 10.1002/mnfr.200700184
Shin, S. K., Ha, T. Y., Mcgregor, R. A., & Choi, M. S. (2011). Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res, 55:1829-1840. 10.1002/mnfr.201100440
Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 64:353-356. 10.1055/s-2006-957450
Soliman Ghada, Z. A. (2005) Effect of Curcumin, Mixture of Curcumin and Piperine and Curcum (Turmeric) on Lipid Profile of Normal and Hyperlipidemic Rats Egypt. J. Hosp. Med. 21(1):145-161. 10.12816 / EJHM.2005.18057
Soudamini, K. K., Unnikrishnan, M. C., Soni, K. B., & Kuttan, R. (1992). Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J. Physiol. Pharmacol, 36(4):239-243
Sreejayan, M. N. R. (1994). Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm. Pharmacol, 46(12):1013-1016. doi:10.1111/j.2042-7158.1994.tb03258.x.
Srinivasan, K. (2007). Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr, 47(8):735-748. 10.1080/0408390601062054
Suresh, D., & Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res, 131:682-691
Torres, N., Guevara-Cruz, M., Velazquez-Villegas, L. A., & Tovar, A. R. (2015). Nutrição e aterosclerose. Arch. Med. Res, 46(5):408-426
Tu, Y., Sun, D., Zeng, X., Yao, N., Huang, X., Huang, D., & Chen, Y. (2014). Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet. Exp. Ther. Med, 8(1):260-266. 10.3892/etm.2014.1717
Um, M. Y., Hwang, K. H., Ahn, J., & Ha, T. Y. (2013). Curcumin attenuates diet‐ induced hepatic steatosis by activating AMP‐activated protein kinase. Basic Clin Pharmacol Toxicol, 113(3):152‐157. 10.1111/bcpt.12076
Wang, L., Palme, V., Rotter, S., Schilcher, N., Cujak, M., Wang, D., Ladurner, A., Heiss, E. H., Stangl, H., Dirsch, V. M., & Atanasov, A. G. (2016). Pipperine Innhibits ABCA1 Degradation and Promotes Cholesterol Efflux from THP-1-derived Macrophages. Mol. Nutr. Food Res. 61(4): 1500960. 10.1002/mnfr.201500960
WHO, Wourd Health Statistics (2011). < https://www.who.int/gho/publications/world_health_statistics/2011/en/>
Yan, C., Zhang, Y., Zhang, X., Aa, J., Wang, G., & Xiem Y. (2018). Curcumin regulates endogenous and exogenous metabolism via Nrf2‐ FXR‐LXR pathway in NAFLD mice. Biomed Pharmacother, 105:274‐281. 10.1016/j.biopha.2018.05.135
Yiu, W. F., Kwan, P. L., Wong, C. Y., Kam, T. S., Chiu, S. M., Chan, S. W., & Chan, R. (2011). Attenuation of fatty liver and prevention of hypercholesterolemia by extract of Curcuma longa through regulating the expression of CYP7A1, LDL-receptor, HO-1, and HMG-CoA reductase. J Food Sci, 76(3): H80-H89. 10.1111/j.1750-3841.2011.02042.x
Zhao, J., Sun, X. B., Ye, F., & Tian, W. X. (2008). Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin. Mol Cell Biochem 351:19-28. 10.1007/s11010-010-0707-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Mackelly Simionatto; Katlin Suellen Rech; Mona Lisa Simionatto Gomes; Jane Manfron; Paulo Vitor Farago
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.