Aireación artificial promueve un mejor rendimiento zootécnico y equilibrio fisiológico del tambaqui (Colossoma macropomum) cultivado en un sistema sin flujo continuo de agua (Amazonía: Brasil)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.11759

Palabras clave:

Aireador; Hematología de peces; Piscicultura; Rendimiento zootécnico.

Resumen

El objetivo de la investigación fue evaluar el efecto de la aireación artificial continua sobre el desempeño zootécnico, las características hematológicas y la concentración de glucosa de tambaqui (Colossoma macropomum) cultivado en un sistema sin flujo de agua. La investigación se realizó con dos tratamientos, con aireación y sin aireación artificial. Se distribuyeron 600 juveniles de tambaqui con un peso inicial promedio de 15±0.15g en dos tanques excavados. Se capturaron 30 peces por unidad de cultivo para realizar mediciones biométricas mensuales y se sometieron a extracción de sangre para determinar parámetros hematológicos. No hubo diferencia entre las variables hematológicas (p<0.05). Sin embargo, el uso continuo de aireación artificial brindó a los peces condiciones más cómodas, resultando en un mayor rendimiento (p<0.05) en hasta 90 días de cultivo, con una ganancia de peso diaria promedio de 4.82 g frente a 4.49g  al sistema sin aireación artificial. Se puede inferir que los peces criados en un sistema sin aireación artificial presentaron, al compararlos con los criados en un sistema con aireación artificial continua, valores menores (p<0.05) de crecimiento, tanto en peso como en longitud, consecuentemente el uso continuo de El aireador proporcionó condiciones favorables para los peces, lo que resultó en una ganancia de peso diaria promedio y una ganancia de biomasa total.

Citas

Aerts, J., Metz, J. R., Ampe, B., Decostere, A., Flik, G. & Saeger, S. (2015). Scales Tell a Story on the Stress History of Fish. PLOS ONE, 10(4), e0123411. doi: 10.1371 / journal.pone.0123411

Araújo, L. D., Chagas, E. C., Gomes, L. C. & Brandão, F. R. (2004). Efeito de banhos

terapêuticos com formalina sobre indicadores de estresse em tambaqui. Pesquisa Agropecuária Brasileira, 39(3), 217-221. doi: 10.1590/S0100-204X2004000300003

Aride, P. H. R., Oliveira, A. M., Batista, R. B., Ferreira, M. S., Pantoja-Lima, J., Ladislau, D. S., Castro, P. D. S. & Oliveira, A. T. (2017). Changes on physiological parameters of tambaqui (Colossoma macropomum) fed with diets supplemented with Amazonian fruit Camu camu (Myrciaria dubia) Brazilian Journal of Biology, 78(2). doi: 10.1590/1519-6984.169442

Azevedo, T. M. P., Albinati, R. C. B., Guerra-Santos, B., Pinto, L. F. B. , Lira, A. D., Medeiros, S. D. C. & Ayres, M. C. C. (2016). Reference values of the hematological paramaters of Oreochromis niloticus (Linaeus, 1758) cultivated in network tanks in Paulo Afonso, in the state of Bahia. Brazil. Brazilian Journal of Aquatic Science and Technology, 20(2). doi: 10.14210/bjast.v20n2.4588

Baldisseroto, B. (2013). Fisiologia de peixes aplicada à piscicultura. Santa Maria: Universidade Federal de Santa Maria.

Barton, B. A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42. doi: 10.1093/icb/42.3.517

Bezerra, S. K., Souza, R. C., Melo, J. F. B. & Campeche, D. F. B. (2014). Growth of tambaqui fed with different concentrations of manga and protein meal in feed. Archivos de Zootecnia, 63, 244. doi: 10.4321/S0004-05922014000400003

Bjornsson, B. T., Johansson V. & Benedet, S. (2002). Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiology and Biochemistry, 27, 227-242.

Cavali, J., Dantas-Filho, J. V., Nóbrega, B. A., Andrade, L. H. V., Pontuschka, R. B., Gasparotto, P. H. G., Francisco, R. S., Campeiro Junior, L. D. & Porto, M. O. (2020). Benefits of Adding Virginiamycin to Arapaima gigas (Schinz, 1822) Diet Cultivated in the Brazilian Amazon. Scientifica, 2020. doi:10.1155/2020/5953720

Cavero, B. A. S., Rubim, M. A. L. & Pereira, T. M. (2009). Criação comercial do tambaqui Colossomama cropomum (Cuvier, 1818). In: Tavares-Dias, M. (Org.). Manejo e sanidade de peixes em cultivo. Macapá: EMBRAPA; p.33-46.

Cerdeira, K. A., Souza, K. J. N. S., Ferreira, J. B., Zampar, A., Ono, E. A. & Affonso, E. G. (2018). Soybean meal in diets for juveniles of pirarucu. Boletim do Instituto de Pesca, 44(3). doi: 10.20950/1678-2305.2018.318

Chamy, M. N. C. L., Souza, R. P., Costa, A. G. & Tavares-Dias, M. (2015). Hematologia do Mylossoma duriventris (Serrasalmidae) da bacia do rio Solimões, Amazônia Central, Brasil. Revista de Veterinária e Zootecnia 22, 597-606.

Chagas, E. C., Gomes, L. C., Junior, H. M. & Roubach, R. (2007). Productivity of tambaqui raised in a nursery with different feeding rates. Ciência Rural 37, 1109-1115.

Cipriano, F. S., Lima, K. S., Souza, R. H. B., Tonini, W. C. T., Passinato, E. B., Braga, L. G. T. (2016). Digestibility of animal and vegetable protein ingredients by pirarucu juveniles, Arapaima gigas. Revista Brasileira de Zootecnia, 45(10). doi: 10.1590/S1806-92902016001000001

Cruz, C. D. (2013). Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum: Agronomy, 35(3), 271-276. doi: 10.4025/actasciagron.v35i3.21251

FAO. (2018) Food and Agriculture Organization of the United Nations. Fishery and aquaculture statistics 2018. Roma: FAO yearbook.

Fuentes, E. N., Valdés, J. A., Molina, A. & Björnsson, B. T. (2013). Regulation of skeletal muscle growth in fish by the growth hormone – Insulin-like growth factor system. General and Comparative Endocrinology, 192, 136-148. doi: 10.1016 / j.ygcen.2013.06.009

Garcia-Navarro, C. E. K. (2005). Manual de Hematologia Veterinária. São Paulo: Varela; 169p.

Goldenfarb, P. B., Bowyer, F. P. & Hall, E. (1971). Reproducibility in the hematology laboratory: the microhematocrit determination. American Journal of Clinical Pathology, 56, 35-39.doi:10.1093/ajcp/56.1.35

IGFA (2001). Internacional Game Fish Association. Database of IGFA angling records until 2001. Fort Lauderdale: IGFA.

Inoue, L. A. K. A., Moraes, G., Iwama, G. K. & Afonso, L. O. B. (2008). Physiological stress responses in the warm-water fish matrinxã (Brycon amazonicus) subjected to a sudden cold shock. Acta Amazonica, 38, 603-610. doi: 10.1590/S0044-59672008000400002

Lima, E. C. R., Souza, R. L., Wambach, X. F., Silva, U. L. & Correia, E. S. (2015). Culture of the Nile tilapia (Oreochromis niloticus) in biofloc system with different stocking densities. Revista Brasileira de Saúde e Produção Animal, 16(4). doi: 10.1590/S1519-99402015000400018

Martins, M. L., Tavares-Dias, M., Fujimoto, R. Y., Onaka, E. M. & Nomura, D. T. (2004). Hematological alterations of Leporinus macrocephalus (Osteichthyes: Anostomidae) naturally infected by Goezia leporini (Nematoda: Anisakidae) in fish pond. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 56, 640-646. doi:10.1590/S0102-09352004000500011

Martins, L. P., Franco, V., Dantas Filho, J. V. & Freitas, C. O. (2020). Economic viability for the cultivation of tambaqui (Colossoma macropomum) in na excavated tank in the municipality of Urupá, Rondônia-Brazil. Revista de Administração e Negócios da Amazônia, 12(2). doi: 10.18361/2176-8366/rara.v12n2p64-89

McCormick, S. D., Sheehan, T. F., Bjornsson, B. T., Lipsky, C., Kocik, J. F., Regish, A. M. & O’Dea, M. F. (2013). Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration and entry into the ocean. Canadian Journal of Fisheries and Aquatic Sciences, 70, 105-118. doi: 10.1139/cjfas-2012-0151

Meante, R. E. X. & Dória, C. R. C. (2017). Characterization of the fish production chain in the state of Rondônia: development and limiting factors. Revista de Administração e Negócios da Amazônia, 9(4): 164-181. doi: 10.18361/2176-8366/rara.v9n4p164-181

Merighe, G. K. F., Pereira, S. E. M., Negrão, J. A. & Ribeiro, S. (2004). Efeito da Cor do Ambiente sobre o Estresse Social em Tilápias-do-Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia, 33, 828-837. doi: 10.1590/S1516-35982004000400002

Oliveira, R. P. C., Silva, P. C., Brito, P. P., Gomes, J. P., Silva, R. F., Silveira Filho, P. R. & Roque, R. S. (2010). Variáveis hidrológicas físico-químicas na criação da Tilápia-do-nilo no sistema raceway com diferentes renovações de água. Ciência Animal Brasileira, 11(3), 482-487. doi: 10.5216/cab.v11i3.3847

Oliveira, R. P. C., Silva, P. C., Pádua, D. M. C., Aguiar, M., Maeda, H., Machado, N. P., Rodrigues, V. & Silva, R. H. (2007). Efeitos da densidade de estocagem sobre a qualidade da água na criação do tambaqui (Colossoma macropomum Cuvier, 1818) durante a segunda alevinagem em tanques fertilizados. Ciência Animal Brasileira, 8(4), 705-711.

Pádua, S. B., Dias Neto, J., Sakabe, R., Claudiano, G. S., Chagas, E. C. & Pilarski, F. (2013). Hematologic variables in tambaquis anesthetized with clove oil and benzocaine. Pesquisa Agropecuária Brasileira, 48(8), 1171-1174. doi: 10.1590/S0100-204X2013000800056

Porto, M.O., Oliveira, J. D., Cavali, J., Dantas Filho, J.V., Soares, N. T. D., Gasparotto, P. H. G. & Ferreira, E. (2020). Food frequency for tambaquis Colossoma macropomum (CUVIER, 1818) cultivated in na Amazonic Research Center. Revista de Administração e Negócios da Amazônia, 12(1). doi: 10.18361/2176- 8366/rara.v12n1p108-121

Oliveira, E. G., Pinheiro, A. B., Oliveira, V. Q., Silva Júnior, A. R. M., Moraes, M. G., Rocha, I. R. B., Sousa, R. R. & Costa, F. H. F. (2012). Effects of stocking density on the performance of juvenile pirarucu (Arapaima gigas) in cages. Aquaculture, 370-371, 96-101. doi: 10.1016/j.aquaculture.2012.09.027

Ozovehe, B. N. (2013). Growth performance, haematological indices and some biochemical enzymes of juveniles Clarias gariepinus (Bruchel 1822) fed varying levels of Moringa oleifera leaf meal diet. Journal of Aquaculture Research & Development, 4(2). doi:10.4172/2155-9546.1000166.

Paz, A. L. & Val A. L. (2018). Manipulation of growth of the Amazonian fsh tambaqui, Colossoma macropomum (Characiformes: Serrasalmidae): analysis of physiological and zootechnical aspects. Acta Amazonica, 48, 197-206. doi:10.1590/1809-4392201800181

Peixe BR. Associação Brasileira da Piscicultura (2020). Anuário 2020: Peixe BR da Piscicultura. Pinheiros-SP: PEIXE BR; 136p.

Pereira, S. A., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. Metodologia da pesquisa científica. 1.ed. Santa Maria, RS : UFSM, NTE; 2018.

Ranzani-Paiva, M. J. T., Pádua, S. B., Tavares-Dias, M. & Egami, M. I. (2013). Métodos para análises hematológicas em peixes. Maringá: Eduem.

Sampaio, F. D. F. & Freire, C. A. (2016). An overview of stress physiology of fish transport: changes in water quality as a function of transport duration. Fish and Fisheries, 1-8. doi: 10.1111/faf.12158

Schmidt-Nielsen, K. (1986). Fisiologia animal: adaptação e meio ambiente. São Paulo: Santos 600p.

Serezli, R., Akhan, S. and Delihsan-Sonay, S. (2011). Acute effects of copper and lead on some blood parameters on coruh trout (Salmo coruhensis). African Journal of Biotechnology, 10, 3204-3209. doi: 10.5897/AJB10.2505

Schreck, C. B. & Tort, L. (2016). The concept of stress in fish. Biology of Stress in Fish - Fish Physiology, 1-34. doi: 10.1016 / b978-0-12-802728-8.00001-1

Silva, A. D. R., Santos, R. B., Bruno, A. M. S. S. & Soares, E. C. (2013). Cultivo de tambaqui em canais de abastecimento sob diferentes densidade de peixes. Acta Amazonica, 43, 517-523. doi:10.1590/S0044-59672013000400014

Silva, C. A. & Fujimoto, R. Y. (2015). Crescimento de tambaqui em resposta a

densidade de estocagem em tanques-rede. Acta amazônica, 45(3), 323–332. doi: 10.1590/1809-4392201402205

Silva, C. D. M., Pires, C. R. F., Sousa, D. N., Chicrala, P. C. M. & Santos, V. R. V. (2016). Evaluation sensory of canned matrinxã (Brycon amazonicus) in vegetable oil. Journal of Bioenergy and Food Science, 3, 161-169. doi:10.18067/jbfs.v3i3.96

Silva, J. A. M., Pereira-Filho, M., Cavero, B. A. S. & Oliveira, P. M. I. (2007). Digestibilidade aparente dos nutrientes e energia de ração suplementada com enzimas digestivas exógenas para juvenis de tambaqui Colossoma macropomum (Cuvier, 1818). Acta Amazônica, 37(1), 157-164. doi: 10.1590/S0044-59672007000100021

Tanveer, M., Roy, S. M., Vikneswaran, M. P., Renganathan, P., Balasubramanian, S. (2018). Surface aeration systems for application in aquaculture: A review. International Journal of Fisheries and Aquatic Studies, 6(5): 342-347.

Tavares-Dias, M., Moraes, F. R. & Imoto, M. E. (2008). Hematological parameters in two neotropical fresh water teleost, Leporinus macrocephalus (Anostomidae) and Prochilodus lineatus (Prochilodontidae). Bioscience Journal, 24(3), 96-101.

Tavares-Dias, M. & Sandrim, E. F. S. (1998). Características hematológicas de teleósteos brasileiros: Série vermelha e dosagens de cortisol e glicose do plasma sanguíneo de espécimes de Colossoma macropomum em condições de cultivo. Acta Scientiarum 20, 157-160. doi: 10.4025/actascibiolsci.v20i0.4466

Tavares-Dias, M., Oliveira, M. S. B., Gonçalves, R. A. & Silva, L. M. A. (2014). Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica, 59, 158-164. doi: 10.2478/s11686-014-0225-3

Viseka, V., Nankervis, L. & Hevroy, E. M. (2017). High dietary level simulates growth hormose receptor and feed utilization in large Atlantic salmon (Salmo salar L.) under hypoxic conditions. Aquaculture Nutrition, 23, 1193-1203. doi: 10.1111/anu.12488

Descargas

Publicado

17/01/2021

Cómo citar

PORTO, M. O. .; CAVALI, J.; MEDEIROS, I. D. de .; SOARES, M. O. .; DANTAS FILHO, J. V. .; FERREIRA, A. M. .; DIAS, A. de A. .; SANTANA, S. R. . Aireación artificial promueve un mejor rendimiento zootécnico y equilibrio fisiológico del tambaqui (Colossoma macropomum) cultivado en un sistema sin flujo continuo de agua (Amazonía: Brasil). Research, Society and Development, [S. l.], v. 10, n. 1, p. e32310111759, 2021. DOI: 10.33448/rsd-v10i1.11759. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11759. Acesso em: 27 sep. 2024.

Número

Sección

Ciencias Agrarias y Biológicas