Influência da suscetibilidade genética na incidência e mortalidade de COVID-19 (SARS-CoV-2)
DOI:
https://doi.org/10.33448/rsd-v10i1.11812Palavras-chave:
Suscetibilidade genética; COVID-19; Síndrome respiratória aguda grave coronavírus 2 (Sars-cov-2).Resumo
Este estudo teve como objetivo realizar uma revisão bibliográfica sobre a influência da suscetibilidade genética na incidência e mortalidade de COVID-19. Trata-se de uma revisão descritiva da literatura realizada nas bases de dados PUBMED e Science direct utilizando os seguintes descritores: genetic susceptibility” AND “COVID-19”. Os critérios de inclusão foram artigos científicos disponíveis gratuitamente, nos idiomas inglês, espanhol e português e que foram publicados em 2020. Foram excluídos os artigos duplicados entre as bases. Ao final 58 estudos seguiam os critérios estabelecidos. Os genes ACE2 e TMPRSS2, têm potencial para intervenção profilática e terapêutica nos estágios iniciais de infecção por SARS-CoV-2, desempenhando um papel crucial para a entrada do vírus nas células hospedeiras. Além disso, o lócus do Antígeno Leucocitário Humano (HLA), parece ser crucial para influenciar a suscetibilidade e a gravidade do COVID-19. Indivíduos do sexo masculino apresentam uma maior taxa de mortalidade e de gravidade para a COVID-19, sendo relacionado a uma expressão mais significativa de ACE2 e diferenças na regulação epigenética de ACE2. A suscetibilidade genética pode contribuir para a variabilidade clínica interindividual associada ao COVID-19, permitindo uma avaliação de risco baseada em evidências levando a medidas preventivas personalizadas e opções terapêuticas.
Referências
Agrawal, H., Das, N., Nathani, S., Saha, S., Saini, S., Kakar, S. S., & Roy, P. (2020). An assessment on impact of COVID-19 infection in a gender specific manner. Stem cell reviews and reports, 1-19.
Al‐Eitan, L. N., & Alahmad, S. Z. (2020). Pharmacogenomics of genetic polymorphism within the genes responsible for SARS‐CoV‐2 susceptibility and the drug‐metabolising genes used in treatment. Reviews in medical virology, e2194.
Alshahawey, M., Raslan, M., & Sabri, N. (2020). Sex-mediated effects of ACE2 and TMPRSS2 on the incidence and severity of COVID-19; The need for genetic implementation. Current Research in Translational Medicine.
Anastassopoulou, C., Gkizarioti, Z., Patrinos, G. P., & Tsakris, A. (2020). Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Human genomics, 14(1), 1-8.
Abdelzaher, H., Saleh, B. M., Ismail, H. A., Hafiz, M., Abou Gabal, M., Mahmoud, M., & Abdelnaser, A. (2020). COVID-19 genetic and environmental risk factors: a look at the evidence. Frontiers in pharmacology, 11.
Barash, A., Machluf, Y., Ariel, I., & Dekel, Y. (2020). The pursuit of COVID-19 biomarkers: putting the spotlight on ACE2 and TMPRSS2 regulatory sequences. Frontiers in medicine, 7.
Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., & Bruselles, A. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. medRxiv. 2020: 2020.04. 03.20047977.
Bienvenu, L. A., Noonan, J., Wang, X., & Peter, K. (2020). Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovascular Research, 116(14), 2197-2206.
Chakravarty, S. (2020). COVID-19: The Effect of Host Genetic Variations on Host–Virus Interactions. Journal of Proteome Research.
Cammarata-Scalisi, F., Tadich, A. C., & Callea, M. (2020). Genetic variability in the case of COVID-19 infection. Archivos Argentinos de Pediatria, 118(5).
Chiappelli, F. (2020). CoViD-19 Susceptibility. Bioinformation, 16(7), 501.
Carter-Timofte, M. E., Jørgensen, S. E., Freytag, M. R., Thomsen, M. M., Andersen, N. S. B., Al-Mousawi, A., & Mogensen, T. H. (2020). Deciphering the role of host genetics in susceptibility to severe COVID-19. Frontiers in Immunology, 11.
COVID-19 Host Genetics Initiative. (2020). The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. European Journal of Human Genetics, 1.
Choudhary, S., Sreenivasulu, K., Mitra, P., Misra, S., & Sharma, P. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19. Ann Lab Med, 2021(41), 129-38.
Chen, L., & Zheng, S. (2020). Understand variability of COVID-19 through population and tissue variations in expression of SARS-CoV-2 host genes. Informatics in medicine unlocked, 21, 100443.
das Mercês, D. M., da Silva Abdias, G., Moreira, T. A., Lima, F. L. O., & de Vasconcellos Neto, J. R. T. (2020). Doença de coronavírus 2019 (covid-19): mecanismos, diagnóstico diferencial e influência das medidas de intervenção. Research, Society and Development, 9(8), e921986075-e921986075.
Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID‐19 infection: Implications for risk, severity, and outcomes. The FASEB Journal.
de Figueiredo, M. C. F., do Nascimento, J. M. F., Araújo, D. S., Silva, T. R., Barros, F. D. D., de Moura, F. V. P., & Pereira-Freire, J. A. (2020). O impacto do excesso de peso nas complicações clínicas causadas pela COVID-19: Uma revisão sistemática. Research, Society and Development, 9(7), e693974791-e693974791.
Dobrindt, K., Hoagland, D. A., Seah, C., Kassim, B., O'Shea, C. P., Iskhakova, M., & Murphy, A. (2020). Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. bioRxiv.
Devaux, C. A., Rolain, J. M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection.
Elhabyan, A., El Yaacoub, S., Sanad, E., Mohamed, A., Elhabyan, A., & Dinu, V. (2020). The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Research, 198163.
Fujikura, K., & Uesaka, K. (2020). Genetic variations in the human severe acute respiratory syndrome coronavirus receptor ACE2 and serine protease TMPRSS2. Journal of Clinical Pathology.
Foresta, C., Rocca, M. S., & Di Nisio, A. (2020). Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. Journal of Endocrinological Investigation, 1-6.
Godri Pollitt, K. J., Peccia, J., Ko, A. I., Kaminski, N., Dela Cruz, C. S., Nebert, D. W., & Vasiliou, V. (2020). COVID-19 vulnerability: the potential impact of genetic susceptibility and airborne transmission. Human Genomics, 14, 1-7.
Gemmati, D., Bramanti, B., Serino, M. L., Secchiero, P., Zauli, G., & Tisato, V. (2020). COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males?. International Journal of Molecular Sciences, 21(10), 3474.
Gómez, J., Albaiceta, G. M., García-Clemente, M., López-Larrea, C., Amado-Rodríguez, L., Lopez-Alonso, I., & Alvarez-Argüelles, M. E. (2020). Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene, 762, 145102.
Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., & Du, B. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine, 382(18), 1708-1720.
Gutierrez, L., Beckford, J., & Alachkar, H. (2020). Deciphering the TCR repertoire to solve the COVID-19 mystery. Trends in Pharmacological Sciences.
Haitao, T., Vermunt, J., Abeykoon, J., Ghamrawi, R., Gunaratne, M., Jayachandran, M., & Garovic, V. (2020, August). COVID-19 and sex differences: mechanisms and biomarkers. In Mayo Clinic Proceedings. Elsevier.
Hou, Y., Zhao, J., Martin, W., Kallianpur, A., Chung, M. K., Jehi, L., & Cheng, F. (2020). New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC medicine, 18(1), 1-8.
Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., & Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. Journal of medical virology.
Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., & Hastie, K. M. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812-827.
Kuo, C. L., Pilling, L. C., Atkins, J. L., Masoli, J. A., Delgado, J., Kuchel, G. A., & Melzer, D. (2020). APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. medRxiv.
Kachuri, L., Francis, S. S., Morrison, M., Bossé, Y., Cavazos, T. B., Rashkin, S. R., & Witte, J. S. (2020). The landscape of host genetic factors involved in infection to common viruses and SARS-CoV-2. medRxiv.
Klaassen, K., Stankovic, B., Zukic, B., Kotur, N., Gasic, V., Pavlovic, S., & Stojiljkovic, M. (2020). Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. bioRxiv.
Latini, A., Agolini, E., Novelli, A., Borgiani, P., Giannini, R., Gravina, P., & Novelli, G. (2020). COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells. Genes, 11(9), 1010.
Lorente, L., Martín, M. M., Franco, A., Barrios, Y., Cáceres, J. J., Solé-Violán, J., & Jiménez, A. (2020). HLA genetic polymorphisms and prognosis of patients with COVID-19. Medicina intensiva.
LoPresti, M., Beck, D. B., Duggal, P., Cummings, D. A., & Solomon, B. D. (2020). The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. medRxiv.
Lacoma, A., Mateo, L., Blanco, I., Méndez, M. J., Rodrigo, C., Latorre, I., ... & Prat, C. (2019). Impact of host genetics and biological response modifiers on respiratory tract infections. Frontiers in immunology, 10, 1013.
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., & Xing, X. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine.
Lingeswaran, M., Goyal, T., Ghosh, R., Suri, S., Mitra, P., Misra, S., & Sharma, P. (2020). Inflammation, Immunity and Immunogenetics in COVID-19: A Narrative Review. Indian Journal of Clinical Biochemistry, 1.
Liu, D., Yang, J., Feng, B., Lu, W., Zhao, C., & Li, L. (2020). Mendelian randomization analysis identified genes pleiotropically associated with the risk and prognosis of COVID-19. Journal of Infection.
Mitra, P., Suri, S., Goyal, T., Misra, R., Singh, K., Garg, M. K., & Sharma, P. (2020). Association of comorbidities with Coronavirus disease 2019: A review. Annals of the National Academy of Medical Sciences (India).
Murray, M. F., Kenny, E. E., Ritchie, M. D., Rader, D. J., Bale, A. E., Giovanni, M. A., & Abul-Husn, N. S. (2020). COVID-19 outcomes and the human genome. Genetics in Medicine, 1-3.
Mohammadpour, S., Torshizi Esfahani, A., Halaji, M., Lak, M., & Ranjbar, R. (2020). An updated review of the association of host genetic factors with susceptibility and resistance to COVID‐19. Journal of Cellular Physiology, 236(1), 49-54.
Maiti, A. K. (2020). The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics, 72(6), 387-391.
Moradi, F., Enjezab, B., & Ghadiri-Anari, A. (2020). The role of androgens in COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews.
Novelli, A., Andreani, M., Biancolella, M., Liberatoscioli, L., Passarelli, C., Colona, V. L., & Andreoni, M. (2020). HLA allele frequencies and susceptibility to COVID‐19 in a group of 99 Italian patients. Hla, 96(5), 610-614.
Nguyen, A., David, J. K., Maden, S. K., Wood, M. A., Weeder, B. R., Nellore, A., & Thompson, R. F. (2020). Human leukocyte antigen susceptibility map for SARS-CoV-2. Journal of virology.
Khan, F. A. (2020). The role of selectivity of the SARS-CoV-2 virus for human genetic profiles in susceptibility and resistance to COVID-19. New Microbes and New Infections, 36.
Ovsyannikova, I. G., Haralambieva, I. H., Crooke, S. N., Poland, G. A., & Kennedy, R. B. (2020). The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunological reviews, 296(1), 205-219.
Pathak, G. A., Wendt, F., Goswami, A., De Angelis, F., Polimanti, R., & COVID-19 Host Genetics Initiative. (2020). ACE2 Netlas: In-silico functional characterization and drug-gene interactions of ACE2 gene network to understand its potential involvement in COVID-19 susceptibility. medRxiv.
Pisanti, S., Deelen, J., Gallina, A. M., Caputo, M., Citro, M., Abate, M., & Martinelli, R. (2020). Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of Covid-19. Journal of translational medicine, 18(1), 1-16.
Panda, A. K., Padhi, A., & Prusty, B. A. K. (2020). CCR5 Δ32 minorallele is associated with susceptibility to SARS-CoV-2 infection and death: An epidemiological investigation. Clinica Chimica Acta; International Journal of Clinical Chemistry.
Pinto, B. G., Oliveira, A. E., Singh, Y., Jimenez, L., Goncalves, A. N., Ogava, R. L., & Nakaya, H. I. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. medRxiv. 2020.
Paniri, A., Hosseini, M. M., Eslam, M. M., & Akhavan-Niaki, H. (2020). Comprehensive in silico identification of impacts of ACE2 SNPs on COVID-19 susceptibility in different populations. Gene reports, 100979.
Pereira, N. L., Ahmad, F., Cummins, N. W., Byku, M., Morris, A. A., Owens, A., & Cresci, S. (2020, December). COVID-19: Understanding Inter-Individual Variability and Implications for Precision Medicine. In Mayo Clinic Proceedings. Elsevier.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Ramos-Lopez, O., Daimiel, L., Ramírez de Molina, A., Martínez-Urbistondo, D., Vargas, J. A., & Martínez, J. A. (2020). Exploring Host Genetic Polymorphisms Involved in SARS-CoV Infection Outcomes: Implications for Personalized Medicine in COVID-19. International journal of genomics, 2020.
Ragia, G., & Manolopoulos, V. G. (2020). Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2 mediated SARS-CoV-2 entry. Pharmacogenomics, (0).
Ravaioli, S., Tebaldi, M., Fonzi, E., Angeli, D., Mazza, M., Nicolini, F., & Bravaccini, S. (2020). ACE2 and TMPRSS2 Potential Involvement in Genetic Susceptibility to SARS-COV-2 in Cancer Patients. Cell transplantation, 29, 0963689720968749.
Renieri, A., Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., & Musacchia, F. (2020). ACE2 variants underlie interindividual variability and susceptibility to COVID-19 in Italian population. medRxiv.
Sharma, P., Pandey, A. K., & Bhattacharyya, D. K. (2020). Determining crucial genes associated with COVID-19 based on COPD Findings✶,✶✶. Computers in biology and medicine, 128, 104126.
Sakuraba, A., Haider, H., & Sato, T. (2020). Population Difference in Allele Frequency of HLA-C* 05 and Its Correlation with COVID-19 Mortality. Viruses, 12(11), 1333.
Samuel, R. M., Majd, H., Richter, M. N., Ghazizadeh, Z., Zekavat, S. M., Navickas, A., & Koh, K. D. (2020). Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell, 27(6), 876-889.
Sousa, G. O., Sales, B. N., Rodrigues, A. M. X., de Moura Rocha, G. M., & de Oliveira, G. A. L. (2020). Evolução epidemiológica da COVID-19 no Brasil e no mundo. Research, Society and Development, 9(7), e630974653-e630974653.
Srivastava, A., Bandopadhyay, A., Das, D., Pandey, R. K., Singh, V., Khanam, N., & Gupta, P. (2020). Genetic association of ACE2 rs2285666 polymorphism with Covid-19 spatial distribution in India. Frontiers in genetics, 11, 1163.
Smatti, M. K., Al-Sarraj, Y. A., Albagha, O., & Yassine, H. M. (2020). Host genetic variants potentially associated with SARS-CoV-2: A multi-population analysis. Frontiers in genetics, 11.
Toyoshima, Y., Nemoto, K., Matsumoto, S., Nakamura, Y., & Kiyotani, K. (2020). SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. Journal of human genetics, 65(12), 1075-1082.
Tomita, Y., Ikeda, T., Sato, R., & Sakagami, T. (2020). Association between HLA gene polymorphisms and mortality of COVID‐19: An in silico analysis. Immunity, inflammation and disease, 8(4), 684-694.
Thomson, B. (2020). The COVID-19 pandemic: A global natural experiment. Circulation.
Vargas-Alarcón, G., Posadas-Sánchez, R., & Ramírez-Bello, J. (2020). Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sciences, 260, 118313.
Wang, J., Xu, X., Zhou, X., Chen, P., Liang, H., Li, X., & Hao, P. (2020). Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. The Journal of general virology, 101(9), 921.
Wei, J., Alfajaro, M. M., DeWeirdt, P. C., Hanna, R. E., Lu-Culligan, W. J., Cai, W. L., & Chen, J. S. (2020). Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell.
Wang, F., Huang, S., Gao, H., Zhou, Y., Lai, C., Li, Z., & Tang, Q. (2020). Initial Whole Genome Sequencing and Analysis of the Host Genetic Contribution to COVID-19 Severity and Susceptibility. medRxiv.
WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. Who.int. (2020). Retrieved 9 January 2020, from https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china.
Yamamoto, N., Ariumi, Y., Nishida, N., Yamamoto, R., Bauer, G., Gojobori, T., & Mizokami, M. (2020). SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene, 758, 144944.
Zuil, D. M., Fontoura, V. M., Santos, F. S., Neto, M. S., Pascoal, L. M., Martins, M. C. N. S. E., & Graepp-Fontoura, I. Esquemas terapêuticos para combate da Covid-19: revisão sistemática. Research, Society and Development, 10(1), e21310111533-e21310111533.
Zhang, Y. M., Wang, L., Liu, X. Z., & Zhang, H. (2020). The COVID-19 Pandemic from a Human Genetic Perspective. Journal of proteome research, 19(11), 4374-4379.
Zheng, H., & Cao, J. J. (2020). ACE gene polymorphism and severe lung injury in patients with COVID-19. The American journal of pathology.
Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo, W. (2020). Single-cell RNA expression profiling of ACE2, thereceptor of SARS-CoV-2. Biorxiv.
Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., & Zeng, X. (2020). The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology, 108393.
Zhu, Z., Hasegawa, K., Ma, B., Fujiogi, M., Camargo Jr, C. A., & Liang, L. (2020). Association of asthma and its genetic predisposition with the risk of severe COVID-19. Journal of Allergy and Clinical Immunology.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Steffany Larissa Galdino Galisa; Raysla Maria de Sousa Almeida; Adriana Raquel Araújo Pereira Soares; Radmila Raianni Alves Ribeiro; Fábio Rodrigo Araújo Pereira; Kedma Anne Lima Gomes; Milena Edite Casé de Oliveira; Waleska Fernanda Souto Nóbrega; Lorena Sofia dos Santos Andrade; Tácila Thamires de Melo Santos; Beatriz Leodelgario Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.