Minimizar los impactos ambientales causados por los desechos textiles: Una perspectiva práctica
DOI:
https://doi.org/10.33448/rsd-v10i2.12215Palabras clave:
Composicion; Matriz polimérica; Poliéster; Polipropileno reciclado; Sustentabilidad.Resumen
La preocupación ambiental con los residuos generados por los procesos productivos de la industria textil incentivó el desarrollo de investigaciones en la zona. El desarrollo de nuevos materiales a partir de los residuos que genera es una alternativa para disponer de todo el material acumulado, agregando así una nueva aplicación. Como el sector de la construcción también juega un papel importante en relación a la degradación ambiental en el medio urbano, la búsqueda de materiales orientados a la sustentabilidad en el sector es creciente, requiriendo varias investigaciones que buscan el desarrollo de nuevos materiales para el sector. En vista de estas consideraciones, se buscó desarrollar un material alternativo a partir de residuos de poliéster incorporados en una matriz de polímero reciclado. Los materiales obtenidos se caracterizaron mediante Granulometría y SEM, lo que permitió identificar sus propiedades y definir cuál es la mejor metodología a utilizar para la elaboración de las probetas. Posteriormente se prepararon materiales compuestos utilizando diferentes incorporaciones de poliéster (10%, 20%, 30%, 40% y 50%) en relación a la matriz de polipropileno reciclado. Con el análisis de las pruebas de tracción se pudo determinar que los mejores resultados obtenidos se dieron considerando la incorporación de 16,5% de fibra en la matriz de polipropileno reciclado, dado esto confirmado por posteriores pruebas de tracción e impacto.
Citas
Aciu, C., Ilutiu-varvara, D-A, Manea, D-L., Orban, Y-A., & Babora, F. (2018). Recycling of plastic waste materials in the composition of ecological mortars. Procedia Manufacturing, 22, 274-279.
Albach, B., Vianna, S. P. H, Rampon, D. S., & Barbosa, R.V. (2019) An evaluation of modified Kaolinite surface on the crystalline and mechanical behavior of polypropylene. Polymer Testing, 75, 237-245.
Ali Mohsin, M. E., Ibrahim, A. N., Arsad, A., ABD Rahman, M. F., & Alothman, O. Y. (2015) Effect of polypropylene, ethylene vinyl acetate and polyamide-6 on properties of recycled polypropylene/empty fruit bunch composites. Fibers and Polymers, 16, 2359-2367.
Amorim, C. C., Leão, M. M. D., & Moreira, R. F. P. M. (2019). Comparação entre diferentes processos oxidativos avançados para degradação de corante azo. Engenharia Sanitária e Ambiental, 14, 543-550.
Arsad, A., Suradi, N. L., Rahmat, A. R., Danlami, J. M. (2013). The influence of kenaf fiber as reinforcement on recycled polypropylene/recycled polyamide-6 composites. International Journal of Plastics Technology, 17, 149-162.
American Society For Testing And Materials. ASTM D256-10e1: standard test methods for determining the izod pendulum impact resistance of plastics. Philadelphia, 2010.
American Society For Testing And Materials. ASTM D638-10: standard test method for tensile properties of plastics. Philadelphia, 2010.
Aygormez, Y., Canpolat, O., AL-MashhadanI, M. M., & Uysal, M. (2020). Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Construction and Building Materials, 235, 117-502.
Barbosa, J. T. L. Caracterização de compósitos poliméricos feitos com resíduos pós-consumo (poliestireno de alto impacto) e industriais (lama vermelha e fibra de vidro/resina epóxi). Dissertação, Universidade Estadual Paulista Júlio Mesquita Filho, São Paulo, 2019.
Becker, D., Kleinschmidt, A. C., Balzer, P. S., & Soldi, V. (2011). Influência da sequência de mistura do PP-MA nas propriedades dos compósitos de PP e fibra de bananeira. Polímeros, 21, 7-12.
Bedekar, P. A., Bhalkar, B. N., Patil, S. M., & Govindwar, S. P. (2016). Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum. Environmental Science and Pollution Research, 23, 20963-20976.
Beh, E. J., Lombardo, R., & Alberti, G. (2018). Correspondence analysis and the Freeman–Tukey statistic: A study of archaeological data. Computational Statistics & Data Analysis, 128, 73-86. 2018.
Bittencourt, A., Mariot, H., Ribeiro, A., Campos, D., Marques, C., & Resmini, M. A. (2018). Estudo da Influência da Granulometria e da Carga Mineral em Resina Epóxi Utilizada em Fachada Ventilada. Cerâmica industrial, .23, 13-23.
Borsoi, C., Scienza, L. C., Zattera, A. J., & Angrizani, C. C. (2011). Obtenção e caracterização de compósitos utilizando poliestireno como matriz e resíduos de fibras de algodão da indústria têxtil como reforço. Polímeros, 21, 271-279.
Carpio, M., Roldán-Fontana, J., Pacheco-Torres, R., & García, J. (2016). Construction waste estimation depending on urban planning options in the design stage of residential buildings. Construction and Building Materials, 113, 561-570.
Costa, M. A. (2018). Como avaliar o alcance dos Objetivos de Desenvolvimento Sustentável? Desafios e possibilidades para a agenda global de avaliação. Revista Brasileira de Políticas Pública e Internacionais, 3, 100-123.
Dissanayake, D. G. K., Weerasinghe, D. U., Wijesinghe, K. A. P., & Kalpage, K. M. D. M. P. (2018). Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Management, 79, 356-361.
Djonú, P., Rabelo, L. S., Lima, P. V. P. S., Souto, M. V. S., Sabadia, J. A. B., & Sucupira Junior, P. R. G. (2018). Objectives of sustainable development and conditions of health risk areas. Ambiente & Sociedade, 21.
Dria, R., Gasperi, J., Rocher, V., & Tassin, B. Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: Sampling methodological aspects and flux estimations. Science of The Total Environment, 618, 157-164. 2018. https://doi.org/10.1016/j.scitotenv.2017.11.009
Echeverria, C. A., Pahlevani, F., Handoko, W., Jiang, C., Doolan, C., & Sahajwalla, V. (2019). Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation and Recycling, 43, 1-14.
Firmino, H. C. T., Chagas, T. F., Melo, P. M. A., & Silva, L. B. (2017). Caracterização de compósitos particulados de polietileno de alta densidade/pó de concha de molusco. Matéria, 22.
Freeman, M. F., & Tukey, J. W. (1950). Transformations Related to the Angular and the Square Root Ann Math Statist. 21, 607-611.
Gupta, A., Biswal, M., Mohanty, S., & Nayak, S. (2014). Mechanical and Thermal Degradation Behavior of Sisal Fiber (SF) Reinforced Recycled Polypropylene (RPP). Composites Fibers and Polymers, 15, 994-1003.
Haslinger, S., Hummel, M., Anghelescu-Hakala, A., & Maettanem, S. H. (2019). Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Management, 97, 88-96.
Hu, Y., Du, C., Leu, S.Y., Jing, H., Li, X., & Lin, C. S. K. (2018). Valorisation of textile waste by fungal solid state fermentation: An example of circular waste-based biorefinery. Resources, Conservation and Recycling, 129, 27-35.
Karbalaei, S., Hanachi, P., Walker, T. R., & Cole, M. (2018). Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental Science and Pollution Research, 25, 36046-36063.
Klapiszewski, L. et al. (2019). Kraft lignin/cubic boron nitride hybrid materials as functional components for abrasive tools. International Journal of Biological Macromolecules, 122, 88-94.
Martin, L., & Perry, F. Sustainable Construction Technology Adoption. In: Tam VWY, Le KN. (2019). Sustainable construction technologies, 299-316.
Militky, J. (2018). Tensile failure of polyester fibers. In: Bunsell AR (ed) Handbook of Properties of Textile and Technical Fibres (Second Edition). Woodhead Publishing, 421-514.
Nielfa, A., Cano, R., & FDZ-Polanco, M. (2015). Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnology reports, 5, 14-21.
Novaes, C. G., Yamaki, R. T., & Paula, V. F., Nascimento Júnior, B. B., Barreto, J. A., Valasques, G. S., Bezerra, M. A. (2017). Otimização de métodos analíticos usando metodologia de superfícies de resposta. Revista Virtual de Química.
Obaid, N., Kortschot, M. T., & Sain, M. (2018).Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites. Composites Science and Technology, 161, 85-91.
Ogunola, O. S., Onada, O. A., & Falaye, A. E. (2018). Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review). Environmental Science and Pollution Research, 25, 9293-9310.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.
Qin, Y., Zhang, X., Chai, J., Xu, Z., & Li, S. (2019). Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Construction and Building Materials, 194, 216-225.
R D Cook, & S Weisberg (1982) Residuals and influence in regression. Chapman and Hall, London
Rokbi, M., Khaldoune, A., Sanjay, M. R., Senthamaraikannan, P., Ati, A., & Siengchin, S. (2019). Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics. International Journal of Lightweight Materials and Manufacture, 3, 144-149.
Saccani, A., Manzi, S., Lancellotti, I., & Lipparini, L. (2019). Composites obtained by recycling carbon fibre/epoxy composite wastes in building materials. Construction and Building Materials, 04, 296-302.
Silva, D. N. S. (2017). Estudo e Caracterização Mecânica de Compósitos de Matriz Polimérica Reforçado com Fibras de Eucalipto. Dissertação, Universidade do Porto.
Silva, G. C., Ladeira, G. F. X., Nascimento Júnior, H., & Carneiro, J. R. G. (2019). Estudo da substituição do nylon por compósito de polipropileno com fibra de vidro. Matéria.
Sharma, S., Sudhakara, P., Nijar, S., Saini, S., & Singh, G. (2018). Recent Progress of Composite Materials in various. Novel Engineering Applications Materials Today: Proceedings, 5, 28195-28202.
Spadetti, C., Silva Filho, E. A., Sena, G. L., & Melo, C. V. P. (2017). Propriedades térmicas e mecânicas dos compósitos de Polipropileno pós-consumo reforçados com fibras de celulose Polímeros, 27, 84-90.
Suharty, N., Ismail, H., Diharjo, K., Handayani, D., & Firdaus, M. (2016). Effect of Kenaf Fiber as a Reinforcement on the Tensile, Flexural Strength and Impact Toughness Properties of Recycled Polypropylene/Halloysite. Composites Procedia Chemistry, 19, 253-258.
Szopik-Depczynska, K., Kedzierska-Szczepaniak, A., Szczepaniak, K., Cheba, K., Gajda, W., & Ioppolo, G. (2018). Innovation in sustainable development: an investigation of the EU context using 2030 agenda indicators. Land Use Policy, 79, 251-262.
Todkar, S. S., Patil, S. A. (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174, 106927.
Triñanes, S., Rodriguez-Mier, P., Cobas, C., Sánchez, E., Phan-Tan-Luu, R., & Cela, R. (2019). Robustness assessment in computer-assisted liquid chromatography procedures based on desirability functions. Journal of Chromatography, v.1609.
Candioti, V. L., Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123-138. 201.
Wanassi, B., Hariz, I. B., Ghimbeu, C. M., Vaulot, C., Hassen, M. B., & Jeguirim, M. (2017). Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Environmental Science and Pollution Research, 24, 10041-10055.
W D Callister (2012) Ciência e Engenharia de Materiais: Uma introdução. Chapman and Hall.
Xu, X., Wang, Y., & Tao, L. (2019). Comprehensive evaluation of sustainable development of regional construction industry in China. Journal of Cleaner Production, 211, 1078-1087.
Zeller, V., Towa, E., Degrez, M., & Achten, W. M. J. (2018). Urban waste flows and their potential for a circular economy model at city-region level. Waste Management. 83, 83-94.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ana Carolina Dias de Albuquerque; Marla Corso; Lilian Keylla Berto; Flávia Aparecida Reitz Cardoso; Eliane Carvalho de Vasconcelos; Silvia Lucia Favaro; Luciana Cristina Soto Herek Rezende
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.