Emisiones de óxido nitroso en suelos fertilizados con estiércol porcino: procesos de suelo y estrategias de control y mitigación

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12427

Palabras clave:

Gestión ambiental; N2O; Emisiones de gases de efecto invernadero; Fertilización orgânica; Comunidad microbiana.

Resumen

El óxido nitroso (N2O) es uno de los principales gases que contribuyen al efecto invernadero. Con un potencial de calentamiento global 265 veces mayor que el dióxido de carbono (CO2), en un horizonte de 100 años, también tiene un potencial de depreciación de la capa de ozono. Las actividades agrícolas son responsables de aproximadamente el 60% de las emisiones antropogénicas globales de este gas. En Brasil, este sector representa el 37% de las emisiones totales. Los objetivos de este artículo de revisión fueron: (i) Verificar cuáles son los principales procesos involucrados en las emisiones de N2O en suelos fertilizados con estiércol porcino; (ii) Cuáles son las emisiones directas en estos suelos bajo diferentes sistemas de manejo, y; (iii) Cuáles son las posibles estrategias para controlar y mitigar las emisiones de N2O. Por lo tanto, se realizó una investigación exploratoria y cualitativa de artículos utilizando las siguientes palabras clave: óxido nitroso’, ‘nitrous oxide’, ‘N2O’, ‘nitrogênio’, ‘nitrogen’, ‘suínos, ‘pig, ‘swine’, ‘dejetos’, ‘manure’ y ‘slurry’. Se verificaron los efectos de la dieta del cerdo, los sistemas de tratamiento de estiércol, la presencia de metales pesados ​​en el suelo y el contenido de humedad del estiércol sobre las emisiones de N2O. Por lo tanto, recomendamos estudios integrados de los impactos cuantitativos y cualitativos de los niveles y fuentes de nitrógeno en la dieta de los animales sobre las emisiones de N2O luego de la aplicación de estos desechos al suelo. También recomendamos estudios relacionados con los efectos del contenido de cobre y zinc agregado al suelo a través del estiércol de cerdo sobre las enzimas que catalizan el proceso de desnitrificación biótica en el suelo.

Citas

Aguilera, E., Luis Lassaletta, A-C., Josette, G., & Antonio, V. (2013). The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean Climate cropping systems. A Review. Agriculture, Ecosystems and Environment 164: 32–52. 10.1016/j.agee.2012.09.006.

Aita, C. J., Schirmann, S. B., Pujol, S. J., Giacomini, P. Rochette, D. A., Angers, M. H., Chantigny, R., Gonzatto, D. A., & Giacomini, A. D. (2015). Reducing nitrous oxide emissions from a maize-wheat sequence by decreasing soil nitrate concentration: effects of split application of pig slurry and dicyandiamide. European Journal of Soil Science 66 (2): 359–68. 10.1111/ejss.12181.

Amon, T., Barbara, A., Vitaliy, K, Werner, Z., Karl, M., & Leonhard, G (2007). Biogas production from maize and dairy cattle manure-influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment 118 (1–4): 173–82. 10.1016/j.agee.2006.05.007.

Baggs, E. M., M. Stevenson, M., Pihlatie, A. Regar, H., & Cook, G. C. (2003). Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant and Soil 254 (2): 361–70. 10.1023/A:1025593121839.

Bertora, C., Francesco, A., Laura, Z., Jan, W. G., Gerard, V., & Carlo, G. (2008). Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biology and Biochemistry 40 (8): 1999–2006. 10.1016/j.soilbio.2008.03.021.

Brasil (2014). Estimativas anuais de emissões de gases de efeito estufa. (http://sirene.mcti.gov.br/documents/1686653/1706227/Estimativasd.pdf/0abe2683-e0a8-4563-b2cb-4c5cc536c336)

Butterbach-Bahl, K., E. M. Baggs, M. Dannenmann, R. Kiese, and S. Zechmeister-Boltenstern (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1621): 20130122–20130122. 10.1098/rstb.2013.0122.

Chantigny, M. H., Philippe Rochette, D. A., Angers, Shabtai Bittman, K. B., Daniel Massé, G. B., Nikita, E-H., & Marc-Olivier, G. (2010). Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure. Journal of Environment Quality 39 (5): 1545. 10.2134/jeq2009.0482.

Dambreville, C., Thierry, M., & Jean, C. G. (2008). N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agriculture, Ecosystems and Environment 123 (1–3): 201–10. 10.1016/j.agee.2007.06.001.

De Conti, L., Carlos, A., Ceretta, P. A. A., Ferreira, C. R., Lourenzi, E. G., Felipe Lorensini, T. L., Tiecher, C. M., Mylena, G. A., & Gustavo, B. (2016). Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agriculture, Ecosystems and Environment 216. Elsevier B.V.: 374–86. 10.1016/j.agee.2015.09.040.

Decock, C. (2014). Mitigating nitrous oxide emissions from corn cropping systems in the Midwestern U.S.: potential and data gaps. Environmental Science & Technology 48 (8): 4247–56. 10.1021/es4055324.

Dennehy, C., Peadar, G., Lawlor, Y. J., Gillian, E., Gardiner, S., Xie, L. D., & Nghiem, X. Z. (2017). Greenhouse gas emissions from different pig manure management techniques: A Critical Analysis. Frontiers of Environmental Science & Engineering 11 (3), 11. 10.1007/s11783-017-0942-6.

Domeignoz-Horta, L. A., M. Putz, A. Spor, D. Bru, M. C. Breuil, S., & Hallin, L. P. (2016). Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil. Soil Biology and Biochemistry 103 (December): 376–79. 10.1016/j.soilbio.2016.09.010.

Doneda, A., Celso, A., Sandro, J. G., Ezequiel, C. C. M., Diego, A. G., Janquieli, S., & Rogério, G. (2012). Fitomassa e decomposição de resíduos de plantas de cobertura puras e consorciadas. Revista Brasileira de Ciencia do Solo 36 (6): 1714–23. 10.1590/S0100-06832012000600005.

Dunmola, A. S., M. Tenuta, A. P. Moulin, P., & Yapa, D. A. L. (2010). Pattern of greenhouse gas emission from a prairie pothole agricultural landscape in Manitoba, Canada. Canadian Journal of Soil Science 90: 243–56. 10.4141/CJSS08053.

FAO (2016). Nitrous oxide emissions in manure management and Manure applied to soils. (http://www.fao.org/faostat/en/#data)

FATMA (2014). Instrução Normativa Nº11 - suinocultura. (http://www.fatma.sc.gov.br/ckfinder/userfiles/arquivos/ins/11/IN%2011%20Suinocultura.pdf〉 (accessed Jun 2017)

Ghimire, R., Urszula, N., Prakriti, B., Augustine, K. O., & Jay, B. N. (2017). Soil organic matter, greenhouse gases and net global warming potential of irrigated conventional, reduced-tillage and organic cropping systems. Nutrient Cycling in Agroecosystems 107 (1): 49–62. 10.1007/s10705-016-9811-0.

Giacomini, S. J., Claúdia, P. J., Celso, A., Segundo Sacramento Urquiaga, and Bruno José Rodrigues Alves (2006). Emissão de óxido nitroso com a aplicação de dejetos líquidos de suínos em solo sob plantio direto. Pesquisa Agropecuaria Brasileira 41 (11): 1653–61. 10.1590/S0100-204X2006001100012.

Girotto, E., et al (2010). Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Revista Brasileira de Ciência do Solo 34 (3): 955–65. 10.1590/S0100-06832010000300037.

Gonzatto, R., et al (2013). Volatilização de amônia e emissão de óxido nitroso após aplicação de dejetos líquidos de suínos em solo cultivado com milho. Ciência Rural 43 (9): 1590–96. 10.1590/S0103-84782013000900009.

Gui, M., et al (2017). Effects of heavy metals on aerobic denitrification by strain Pseudomonas Stutzeri PCN-1. Applied Microbiology and Biotechnology 101 (4). Applied Microbiology and Biotechnology: 1717–27. 10.1007/s00253-016-7984-8.

Heil, J., H., & Vereecken, N. B. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science 67 (1): 23–39. 10.1111/ejss.12306.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Climate Change 2013: The Physical Science Basis, no. January 2014: 1–169. 10.1017/CBO9781107415324.

Jongbloed, Age W. 2008. Environmental pollution control in pigs by using nutrition tools age. Revista Brasileira de Zootecnia 37: 215–29.

Kariyapperuma, K. A., et al (2012). Non-growing season nitrous oxide fluxes from an agricultural soil as affected by application of liquid and composted swine manure. Canadian Journal of Soil Science 92 (2): 315–27. 10.4141/cjss2011-059.

López-Fernández, S., J. A. Díez, P. Hernáiz, A. Arce, L. & García-Torres, A. V. (2007). Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutrient Cycling in Agroecosystems 78 (3): 279–89. 10.1007/s10705-007-9091-9.

Loss, A., et al (2015). Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola. Revista Brasileira de Ciencia do Solo 39 (4): 1212–24. 10.1590/01000683rbcs20140718.

Louro, A., et al (2015). Nitrous oxide emissions from forage maize production on a humic cambisol fertilized with mineral fertilizer or slurries in Galicia, Spain. Geoderma Regional 5: 54–63. 10.1016/j.geodrs.2015.03.004.

Meijide, A., et al (2007). Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean Climate. Agriculture, Ecosystems and Environment 121 (4): 383–94. 10.1016/j.agee.2006.11.020.

Meng, L., Weixin, D., & Zucong, C. (2005). Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry 37 (11): 2037–45. 10.1016/j.soilbio.2005.03.007.

Montes, F, R., Meinen, C., Dell, A., Rotz, N., Hristov, J., Oh, G., Waghorn, et al., (2013). SPECIAL TOPICS -- Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science 91: 5070–94. 10.2527/jas2013-6584.

Osada, T, K., & Kuroda, M. Y. (2000). Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process. Journal of Material Cycles and Waste Management, 51–56. 10.1007/s10163-999-0018-1.

Pereira A. S., et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Philippe, F., & Nicks, B (2015). Review on greenhouse gas emissions from pig houses : production of carbon dioxide , methane and nitrous oxide by animals and manure. Agriculture , Ecosystems and Environment 199: 10–25.

Philippot, L., et al (2007). Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy 96 (January): 249–305. 10.1016/S0065-2113(07)96003-4.

Sanchez-Martín, L. A., et al (2017). Diet management to effectively abate N2O emissions from surface applied pig slurry. Agriculture, Ecosystems and Environment 239 (3): 1–11. 10.1016/j.agee.2016.12.007.

Shcherbak, I., N., & Millar, G. P. R. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences 111 (25): 9199–9204. 10.1073/pnas.1322434111.

Six, J., et al (2004). The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology 10 (2): 155–60. 10.1111/j.1529-8817.2003.00730.x.

Suleiman, A. K.A., et al (2016). Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biology and Biochemistry 97: 71–82. 10.1016/j.soilbio.2016.03.002.

Syakila, A., & Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management 1 (1): 17–26. 10.3763/ghgmm.2010.0007.

Tavares, J. M.R., et al (2014). The water disappearance and manure production at commercial growing-finishing pig farms. Livestock Science 169 (C). Elsevier: 146–54. 10.1016/j.livsci.2014.09.006.

Tavares, J. M. R. (2016). Modelagem do consumo de água, produção de dejetos e emissão de gases de efeito estufa e amônia na suinocultura. Tese Doutorado, UFSC, Florianópolis, Brasil.

Thompson, A. G, & Fleming, R. (2003). Emissions of N2O and CH4 during the composting of liquid swine manure. Environmental Monitoring and Assessment, 87–104.

Tiecher, T. L., et al. (2013). Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira de Ciência do Solo 37 (3): 812–24. 10.1590/S0100-06832013000300028.

Velthof, G. L., et al (2005). Gaseous nitrogen and carbon losses from pig manure derived from different diets. Journal of Environmental Quality 34: 698–706. 10.2134/jeq2005.0698.

Zacherl, B., & Amberger, A. (1990). Effect of the nitrification inhibitors Dicyandiamide, Nitrapyrin and Thiourea on Nitrosomonas europaea. Fertilizer Research 22 (1): 37–44. 10.1007/BF01054805.

Zhu, K., et al (2015). Heterogeneity of O2 dynamics in soil amended with animal manure and implications for greenhouse gas emissions. Soil Biology and Biochemistry 84: 96–106. 10.1016/j.soilbio.2015.02.012.

Descargas

Publicado

14/02/2021

Cómo citar

MULLER JÚNIOR, V.; COMIN, J. J. .; FERREIRA, G. W. .; TAVARES, J. M. R.; COUTO, R. da R. .; BELLI FILHO, P. Emisiones de óxido nitroso en suelos fertilizados con estiércol porcino: procesos de suelo y estrategias de control y mitigación. Research, Society and Development, [S. l.], v. 10, n. 2, p. e23910212427, 2021. DOI: 10.33448/rsd-v10i2.12427. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12427. Acesso em: 8 jul. 2024.

Número

Sección

Revisiones