Microorganismos multifuncionales: uso em agricultura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12725

Palabras clave:

Producción de agricultura; Rizobacterias promotoras del crecimiento vegetal; Hongos; Sustentabilidad.

Resumen

Los microorganismos multifuncionales son microorganismos beneficiosos que tienen mecanismos directos e indirectos para promover el crecimiento de las plantas y juegan un papel importante como tecnología alternativa a escala para la agricultura sostenible. El aumento de la demanda de producción agrícola con una reducción significativa en el uso de fertilizantes y pesticidas sintéticos es un desafío importante en la actualidad. El estudio de estos microorganismos se ha destacado en los últimos años debido a la gran demanda de tecnologías sostenibles, que pueden reducir los costos de producción, aumentando la productividad y rentabilidad de la agroindustria. La aplicación de microorganismos multifuncionales a través de mecanismos directos e indirectos ha demostrado que es posible hacer que las prácticas de manejo de cultivos sean más sostenibles ambientalmente. Los mecanismos de los microorganismos multifuncionales incluyen la regulación del equilibrio hormonal, la solubilización de nutrientes en la solución del suelo y la inducción de resistencia contra patógenos. El objetivo del trabajo fue traer información sobre los microorganismos multifuncionales priorizando los aspectos generales, las características de los microorganismos (rizobacterias y hongos) que promueven el crecimiento de las plantas y sus principales mecanismos de acción. En resumen, se concluye que los microorganismos multifuncionales tienen varias características favorables para ser utilizados como promotores del crecimiento vegetal en la agricultura sostenible.

Citas

Abhilash, P. C. C., Dubey, R. K., Tripathi, V., Gupta, V. K. & Singh, H. B. (2016). Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends in Biotechnology, 34 (11), 847-850.

Ahemad, M. S. & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26 (1), 1-20.

Akhtar, N., Mujeeb, F., Qureshi, M. A., Rafique, M., Riaz, A. & Ali, M. A. (2014). Phosphate solubilizing potential of Rhizobium and Bacillus species for enhancing yield and available phosphorus in maize crop (Zea mays). International Journal of Agronomy and Agricultural Research, 4 (1), 58-66.

Angel, R., Nepel, M., Panhölzl, C., Schmidt, H., Herbold, C. W., Eichorst, S. A. & Woebken, D. (2018). Evaluation of Primers Targeting the Diazotroph Functional Gene and Development of NifMAP – A Bioinformatics Pipeline for Analyzing nifH Amplicon Data. Frontiers in Microbiology, 9 (703), 1-15.

Araújo, K. S., Cardoso, K. G. V., Peixoto, C. C., Ramos, E., Silva, H. S. A. &Trindade, A. V. (2014). Promoção do crescimento em mudas micropropagadas de bananeira por rizobactérias. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/873156/promocao-do-crescimento-em-mudas-micropropagadas-de-bananeira-por-rizobacterias

Aung, T. T. (2013). Enhanced soybean biomass by co-inoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and effects on microbial community structures. African Journal of Microbiology Research, 7 (29), 3858- 3873.

Awais, M., Tariq, M., Ali, A., Ali, Q., Khan, A., Tabassum, B., Nasir, I. A. & Husnain, T. (2017). Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatalysis and Agricultural Biotechnology, 11 (1), 312-321.

Baby, K., Kumar, A. & Mallick, M. A. (2016). Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. International Journal Pharm Science, 8 (2), 37-40.

Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H. & Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semisolid media: a practical guide for microbiologists. Plant and Soil, 384 (1), 413-431.

Bashan, Y., Kamnev, A. A. & Bashan, L. E. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphatesolubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biology and Fertility of Soils, 49 (1), 465-479.

Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28 (4), 1327-1350.

Branda, S. S., Vik, S., Friedman, L. & Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13 (1), 20-26.

Briat, J. F., Dubos, C. & Gaymard, F. (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20 (1), 33-40.

Brito, D. (2020). Mercado de biodefensivos cresce mais de 70% no Brasil em um ano. Ministério da Agricultura, Pecuária e Abastecimento. https://www.gov.br/agricultura/pt-br/assuntos/noticias/feffmercado-de-biodefensivos-cresce-em-mais-de-50-no-brasil

Cadore, L. S., Vey, R. T., Fresinghelli, J. C. F., Dotto, L. & Ethur, L. Z. (2018). Evaluation of initial growth of soybean using Trichoderma formulations. Enciclopédia Biosfera, 15 (27), 170-179.

Carvalho, T. & Chagas, I. (2019). Brasil, campeão mundial em consumo de agrotóxicos. Politize. https://www.politize.com.br/brasil-campeao-mundial-em-consumo-de-agrotoxicos/

Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P. & Fidelis, R. R. (2017). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4 (3), 97-102.

Chang, W. S., Lee, H. I. & Hungria, M. (2015). Soybean Production in the Americas. Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, 393- 400.

Chauhan, H., Bagyaraj, D. J., Selvakumar, G. & Sundaram, S. P. (2015). Novel plant growth promoting rhizobacteria - Prospects and potential. Applied Soil Ecology, 95 (1), 38-53.

Chen, L., Jiang, H., Cheng, O., Chen, J., Wu, G., Kumar, A., Sun, M. & Liu, Z. (2015). Enhanced nematicidal potential of the Chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports, 24 (5), 1-11.

Dalolio, R. S., Borin, E., Cruz, R. M. S. & Alberton, O. (2018). Co-inoculação de soja com Bradyrhizobium e Azospirillum. Journal of Agronomic Sciences, 7 (2), 1-7.

Dimkpa, C. O., Dirk, M., Ales, S., Georg, B. & Erika, K. (2009). Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology Biochemistry, 41 (1), 154-162.

Durán, P., Acuña, J. J., Armada, E., López Castillo, O. M., Cornejo, P., Mora, M. L. & Azcón, R. (2016). Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 16 (1), 201-225.

Elmerich, C. (2015). One Hundred Years Discovery of Nitrogen-Fixing Rhizobacteria Biological Nitrogen Fixation. John Wiley & Sons, 897-912.

Enders, T. A. & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 10 (2), 180-196.

Fabiańska, I., Gerlach, N., Almario, J. & Bucher, M. (2019). Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytologist, 221 (4), 2123-2137.

França, D. V. C., Kupper, K. C., Magri, M. M. R., Gomes, T. M. & Rossi, F. (2017). Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesquisa Agropecuária Tropical, 47 (4), 360-368.

González, C. R., Aguilar, L. M., Trujillo, A. R., Santos, P. E., Mellado, C. J., Santos, P. & Mellado, J. C. (2011). High diversity of culturable Burkholderia species associated with sugarcane. Plant and Soil, 345 (1), 155-169.

Guimarães, G. R., Pereira, F. T., Mello, S. C. M. & Carvalho, D. D. C. (2018). Employment of Trichoderma to control Cladosporium sp. and Sclerotinia sclerotiorum and bean growth promoting in Brazil. Caderno de Pesquisa, 30 (2), 28-37.

Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K. & Singh, V. (2015). Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. Journal of Microbiol & Biochemical Technology, 7 (2), 96-102.

Hu, X., Page, M. T., Sumida, A., Tanaka, A., Terry, M. J. & Tanaka, R. (2017). The iron-sulfur cluster biosynthesis protein sufb is required for chlorophyll synthesis, but not phytochrome signaling. The Plant Journal, 89 (6), 1184-1194.

Huo, Y., Kang, J. P., Ahn, J. C., Kim, Y. J., Piao, C. H., Yang, D. U. & Yang, D. C. (2020). Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. Journal of Ginseng Research, 1226-1243.

Johnstone, T. C. & Nolan, E. M. (2015). Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 44 (14), 6320-6339.

Kang, S. M., Khan, A. L., Wagas, M., Asaf, S., Lee, K. E., Park, Y. G., Kim, A. Y., Khan, M. A., You, Y. H. & Lee, I. J. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 14 (1), 416-423.

Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N. & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61 (2), 217-227.

Kavamura, V. N., Santos, S. N., Silva, J. L., Parma, M. M., Avila, L. A. (2013). Screening of Brazilian cacti rhizobacetria for plant growth promotion under drought. Microbiological Research, 168 (4), 183-191.

Liotti, R. G., Figueiredo, M. I. S., Silva, G. F., Mendonça, E. A. F. & Soares, M. A. (2018). Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiological Research, 207 (1), 8-18.

Lopes, R., Tsui, S., Gonçalves, P. J. R. O. & Queiroz, M. (2020). A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World Journal of Microbiology and Biotechnology, 34 (7), 94-102.

Macena, A. M. F., Kobori, N. N., Mascarin, G. M., Vida, J. B. & Hartman, G. L. (2020). Antagonism of Trichoderma-based biofungicides against Brazilian and North American isolates of Sclerotinia sclerotiorum and growth promotion of soybean. BioControl, 65 (1), 235-246.

Machado, P. C. (2015). Identificação molecular e caracterização bioquímica de bactérias endofíticas associadas à cultura do pinhão-manso (Jatropha curcas L.) com potencial biotecnológico. (Dissertação em Biotecnologia). Universidade Federal de São Carlos.

Machado, D. F. M., Parzianello, F. R., Silva, A. C. F., Antoniolli, Z. I. (2012). Trichoderma no Brasil: o fungo e o bioagente. Revista de Ciências Agrárias, 35 (1), 274-288.

Marra, L. M., Soares, C. R. F. S., Oliveira, S. M., Ferreira, P. A. A., Soares, B. L., Carvalho, R. F., Lima, J. M. & Moreira, F. M. S. (2012). Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil, 357 (1), 289-307.

Martínez Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, 10 (3), 293–319.

Masepohl B. (2017). Modern topics in the phototrophic prokaryotes: Metabolism, bioenergetics, and omics. Springer: Cham.

Mayo Pietro, S., Campelo, M. P., Lorenzana, A., Rodríguez González, A., Reinoso, B., Gutiérrez, S. & Casquero, P. A. (2020). Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. European Journal of Plant Pathology, 158, 817-828.

Medeiros, J. C. D., Martins, W. S. & Miranda, F. F. R. (2020). Antagonism of Trichoderma spp. in Fusarium moniliforme biocontrol in corn culture. Revista Sítio Novo, 4 (4), 169-178.

Montaldo, Y. C. (2016). Bioprospecção e isolamento de bactérias associadas à cana-de-açúcar (Saccharum officinarum L.) com características para a promoção de crescimento vegetal. Tese (Doutorado em Rede Nordeste de Biotecnologia) - Instituto de Química e Biotecnologia, Programa de Pós Graduação em Rede Nordeste de Biotecnologia, Universidade Federal de Alagoas, Maceió, 101.

Moreira, A. L. L. & Araújo, F. F. (2013). Bioprospecção de isolados de Bacillus spp. como potenciais promotores de crescimento de Eucalyptus urograndis. Revista Árvore, 37 (5), 933-943.

Nascente, A. S., Fillipi, M. C., Lanna, A. C., Souza, V. L., Silva, L. & Silva, G. B. (2017). Biomass, gas exchange, and nutrient contents in upland rice plants affected application forms of microorganism growth promoters. Environmental Science Pollution Research, 24, 2956-2965.

Neugebauer, W. C., Gomes, C. B. & Mota, M. (2019). Seleção de bactérias para controle biológico de Meloidogyne incognita em figueira. Revista de la Facultad de Agronomía, 118 (1), 51-60.

Oliveira, C. M., Almeida, N. O., Cortes, M. V. C. B., Lobo Júnior, M., Rocha, M. R. & Ulhoa, C. J. (2021). Biological control of Pratylenchus brachyurus with isolates of Trichoderma spp. on soybean. Biological Control, 152.

Oliveira, G. R. F., Silva, M. S., Proença, S. L., Bossolani, J. W., Camargo, J. A., Franco, F. S. & SÁ, M. E. (2017). Influence of Bacillus subtilis in nematodes biological control and production aspects of bean. Brazilian Journal of Biosystems Engineering, 11 (1), 47-58.

Parsek, M. R. & Fuqua, C. (2004). Biofilms: emerging themes and challenges in studies of surface-associated microbial life. Journal of Bacteriology, 186 (14), 4427-4440.

Pereira A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.https://repositorio.ufsm.br /bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Pietro Souza, W., Campos Pereira, F., Mello, I. S., Stachack, F. F. F., Terezo, A. J., Cunha, C. N., White, J. F., Li, H. & Soares, M. A. (2020). Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere, 240, 1-42.

Pinho, R. S. C., Pozzebon, B. C., Rodrigues, K. R. R., Arns, R. B., Alves, C. A. & Bergmann, M. B. (2020). Rizobactérias no controle de Sclerotinia sclerotiorum, e efeitos no desenvolvimento vegetativo de plântulas de soja. Colloquium Agrariae, 16 (4), 110-120.

Puig, S., Ramos Alonso, L., Romero, A. M. & Martínez Pastor, M. T. (2017). The elemental role of iron in DNA synthesis and repair. Metallomics, 9 (11), 1483-1500.

Rai, P. K., Singh, M., Anand, K., Saurabh, S., Kaur, T., Kour, D., Yaday, A. N. & Kumar, M. (2020). Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture. Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives, 49-60.

Rajkumar, M. & Freitas, H. (2008). Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99 (9), 3491-3498.

Ramey, B. E., Koutsoudis, M., Von Bodman, S. B. & Fuqua, C. (2004). Biofilm formation in plant-microbeassociations. Current Opinion in Microbiology, 7 (6), 602-609, 2004.

Ratz, R. J., Palácio, S. M., Espinoza, F. R., Vicentino, R. C., Michelim, H. J. & Richter, L. M. (2017). Potencial biotecnológico de rizobactérias promotoras de crescimento de plantas no cultivo de milho e soja. Engevista, 19 (4), 890-905.

Rocha, D. J. A. & Moura, A. B. (2013). Biological control of tomato wilt caused by Ralstonia solanacearum and Fusarium oxysporum f. sp. lycopersici by rhizobacteria. Tropical Plant Pathology, 38 (5), 423-430.

Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Cei, F. P., Borin, S., Sorlini, C., Zocchi, G. & Daniele, D. (2014). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316-331.

Rout, M. E. (2014). The Plant Microbiome. Advances in Botanical Research. Academic Press, 69, 279-309.

Rubio, M. B., Hermosa, R., Vicente, R., Gómez-Acosta, F. A., Morcuende, R., Monte, E. & Bettiol, W. (2017). The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. Frontiers in Plant Science, 8 (294), 1-14.

Saber, W. I. A., Ghanem, K. M. & El Hersh, M. S. (2009). Rock phosphate solubilization by two isolates of Aspergillusniger and Penicillium sp. and their promotion to mung bean plants. Research Journal of Microbiology, 4 (1), 235-250.

Santoyo, G., Moreno Hagelsieb, G., del Carmen Orozco Mosqueda, M. & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research. 183, 92-99.

Schlaeppi, K. & Bulgarelli, D. (2015). The Plant Microbiome at Work. Molecular Plant Microbe Interactions, 28 (3), 212-217.

Silva, C. M., Pinheiro, C. C. C., Sousa, I. A. L., Lins, P. M. P., Silva, G. B. & Carvalho, E. A. (2018). Biologic control of Bursaphelenchus cocophilus with rhizobacteria and Trichoderma isolates. Nativa, 6 (3), 233-240.

Silva, M. A., Nascente, A. S., Filippi, M. C. C., Lanna, A. C., Silva, G. B. & Silva, J. F. A. (2020). Individual and combined growth-promoting microorganisms affect biomass production, gas exchange and nutrient content in soybean plants. Revista Caatinga, 33 (3), 619-632.

Singh, S., Singh, V. & Pal, K. (2017). Importance of microorganisms in agriculture. Climate and Environmental changes: Impact, Challenges and Solutions, 1, 93-117.

Sousa, I. M., Nascente, A. S. & Filippi, M. C. C. (2019). Bactérias promotoras do crescimento radicular em plântulas de dois cultivares de arroz irrigado por inundação. Colloquium Agrariae, 15 (2), 140-145.

Steffen, G. P. K., Maldaner, J., Missio, E. L. & Steffen, R. B. (2018). Trichoderma controla fitonematóides e aumenta produtividade da soja, Campos & Negócios. https://revistacampoenegocios.com.br/trichoderma-controla-fitonematoides-e-aumenta-produtividade-da-soja/

Sureshbabu, K., Amaresan, N. & Kumar, K. (2016). Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. International Journal of Current Microbiololy and Applied Sciences, 5 (2), 661-683.

Taiz, L. & Zeiger, E. (2004). Fisiologia vegetal. Artmed.

Teymouri, M., Akhtari, J., Karkhane, M. & Marzban, A. (2016). Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest. Biocatalysis and Agricultural Biotechnology, 5, 168-172.

Timmusk, S., Grantcharova, N. & Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 71 (11), 292-7300.

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Boyce, A. N. (2016). Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules, 21 (5), 673-693.

Vicente, E. J. & Dean, D. R. (2017). Keeping the nitrogen-fixation dream alive. Proceedings of the National Academy Sciences, 114 (12), 3009-3011.

Zgadzaj, R., Garrido Oter, R., Jensen, D. B., Koprivova, A., Schulze Lefert, P. & Radutoiu, S. (2016). Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences, 113, 7996-8000.

Publicado

27/02/2021

Cómo citar

REZENDE, C. C.; SILVA, M. A. .; FRASCA, L. L. de M. .; FARIA, D. R.; FILIPPI, M. C. C. de .; LANNA, A. C.; NASCENTE, A. S. Microorganismos multifuncionales: uso em agricultura. Research, Society and Development, [S. l.], v. 10, n. 2, p. e50810212725, 2021. DOI: 10.33448/rsd-v10i2.12725. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12725. Acesso em: 22 nov. 2024.

Número

Sección

Revisiones