Compuestos a base de molibdeno para la remediación ambiental: una revisión
DOI:
https://doi.org/10.33448/rsd-v10i3.13187Palabras clave:
Disulfuro de molibdeno; Remediación ambiental; Adsorción.Resumen
El disulfuro de molibdeno es un material ampliamente utilizado para la remediación ambiental en vista de su excelente capacidad de adsorción, que se atribuye principalmente a los sitios activos de azufre en la superficie de MoS2. Además, tiene ventajas en comparación con otros fotocatalizadores, como por ejemplo debido a su alta actividad fotocatalítica, baja toxicidad y buena capacidad para eliminar contaminantes orgánicos e inorgánicos. En esta revisión presentaremos los diferentes métodos de preparación de disulfuro de molibdeno a partir de exfoliación mecánica, química, electroquímica y los métodos de deposición de vapor hidrotermal, solvotermal y químico. También abordaremos sus propiedades como las capacidades de adsorción para diferentes tipos de metales pesados en solución, los tipos de degradación fotocatalítica a partir de la comparación de adsorbentes basados en MoS2 con otros adsorbentes, los mecanismos de adsorción y los factores que afectan este proceso, tales como el pH y la temperatura de la solución, el tiempo de contacto, los tipos de contaminantes y la influencia de otros iones presentes en la solución que pueden dificultar el proceso de adsorción. Otro proceso a reportar se refiere a la asociación entre MoS2 y otros compuestos, como el óxido de grafeno y compuestos derivados de nitrógeno, óxido de titanio y asociaciones con bismuto y plata, con la principal ventaja de incrementar la capacidad de adoración del material. Como conclusión, hablaremos de la eficiencia de remoción de las diferentes asociaciones de disulfuro de molibdeno frente a los diferentes tipos de contaminantes, así como de los diferentes factores que influyen en esta eficiencia.
Citas
Aghagoli, M. J., Hossein Beyki, M., & Shemirani, F. (2017). Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(II) in vegetable and water samples. Food Chemistry, 223, 8–15. https://doi.org/10.1016/j.foodchem.2016.12.023
Ahn, C., Lee, J., Kim, H. U., Bark, H., Jeon, M., Ryu, G. H., Lee, Z., Yeom, G. Y., Kim, K., Jung, J., Kim, Y., Lee, C., & Kim, T. (2015). Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition. Advanced Materials, 27(35), 5223–5229. https://doi.org/10.1002/adma.201501678
Ai, K., Ruan, C., Shen, M., & Lu, L. (2016a). MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems. Advanced Functional Materials, 26(30), 5542–5549. https://doi.org/10.1002/adfm.201601338
Ai, K., Ruan, C., Shen, M., & Lu, L. (2016b). MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems. Advanced Functional Materials, 26(30), 5542–5549. https://doi.org/10.1002/adfm.201601338
Akple, M. S., Low, J., Liu, S., Cheng, B., Yu, J., & Ho, W. (2016). Fabrication and enhanced CO2 reduction performance of N-self-doped TiO2 microsheet photocatalyst by bi-cocatalyst modification. Journal of CO2 Utilization, 16, 442–449. https://doi.org/10.1016/j.jcou.2016.10.009
Anoop Krishnan, K., & Anirudhan, T. S. (2002). Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: Kinetics and equilibrium studies. Journal of Hazardous Materials, 92(2), 161–183. https://doi.org/10.1016/S0304-3894(02)00014-6
Arai, T., Yanagida, M., Konishi, Y., Iwasaki, Y., Sugihara, H., & Sayama, K. (2008). Promotion effect of CuO co-catalyst on WO3-catalyzed photodegradation of organic substances. Catalysis Communications, 9(6), 1254–1258. https://doi.org/10.1016/j.catcom.2007.11.012
Awasthi, G. P., Adhikari, S. P., Ko, S., Kim, H. J., Park, C. H., & Kim, C. S. (2016). Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. Journal of Alloys and Compounds, 682, 208–215. https://doi.org/10.1016/j.jallcom.2016.04.267
Cai, W., Dionysiou, D. D., Fu, F., & Tang, B. (2020). CTAB–intercalated molybdenum disulfide nanosheets for enhanced simultaneous removal of Cr(VI) and Ni(II) from aqueous solutions. Journal of Hazardous Materials, 396(January), 122728. https://doi.org/10.1016/j.jhazmat.2020.122728
Castro, S., Lopez-Valdivieso, A., & Laskowski, J. S. (2016). Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing, 148, 48–58. https://doi.org/10.1016/j.minpro.2016.01.003
Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., & Zhang, J. (2014). A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy and Environmental Science, 7(5), 1564–1596. https://doi.org/10.1039/c3ee43385d
Chang, K., & Chen, W. (2011). In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chemical Communications, 47(14), 4252–4254. https://doi.org/10.1039/c1cc10631g
Chen, S., Hu, Y., Meng, S., & Fu, X. (2014). Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Applied Catalysis B: Environmental, 150–151, 564–573. https://doi.org/10.1016/j.apcatb.2013.12.053
Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R. J., Shvets, I. V., Arora, S. K., Stanton, G., Kim, H. Y., Lee, K., Kim, G. T., Duesberg, G. S., Hallam, T., Boland, J. J., … Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568–571. https://doi.org/10.1126/science.1194975
Cravanzola, S., Cesano, F., Magnacca, G., Zecchina, A., & Scarano, D. (2016). Designing rGO/MoS2 hybrid nanostructures for photocatalytic applications. RSC Advances, 6(64), 59001–59008. https://doi.org/10.1039/c6ra08633k
Cuellar, E. L., Martínez-De La Cruz, A., Torres, N. C., & Cortez, J. O. (2015). Deposition of BiOBr thin films by thermal evaporation and evaluation of its photocatalytic activity. Catalysis Today, 252, 2–6. https://doi.org/10.1016/j.cattod.2015.01.013
Cui, L., Wang, Y., Gao, L., Hu, L., Yan, L., Wei, Q., & Du, B. (2015). EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 281, 1–10. https://doi.org/10.1016/j.cej.2015.06.043
Cummins, D. R., Martinez, U., Kappera, R., Voiry, D., Martinez-garcia, A., Jasinski, B., Kelly, D., Chhowalla, M., Mohite, A. D., Sunkara, M. K., & Gupta, G. (2015). Catalytic Activity in Lithium Treated Core-Shell MoO x / MoS 2 Nanowires.
Di, J., Xia, J., Ge, Y., Xu, L., Xu, H., Chen, J., He, M., & Li, H. (2014). Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres. Dalton Transactions, 43(41), 15429–15438. https://doi.org/10.1039/c4dt01652a
Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146. https://doi.org/10.1016/j.watres.2015.04.038
Dong, L., Li, Q., Liao, Q., Sun, C., Li, X., Zhao, Q., Shen, R., Zhao, B., Asiri, A. M., Marwani, H. M., Wu, X., & Hu, B. (2019). Characterization of molybdenum disulfide nanomaterial and its excellent sorption abilities for two heavy metals in aqueous media. Separation Science and Technology (Philadelphia), 54(6), 847–859. https://doi.org/10.1080/01496395.2018.1515226
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. (2011). Nl201874W.Pdf. Nano Letters, 5111–5116. https://doi.org/10.1021/nl201874w
Fausey, C. L., Zucker, I., Lee, D. E., Shaulsky, E., Zimmerman, J. B., & Elimelech, M. (2020). Tunable Molybdenum Disulfide-Enabled Fiber Mats for High-Efficiency Removal of Mercury from Water. ACS Applied Materials & Interfaces, 12(16), 18446–18456. https://doi.org/10.1021/acsami.9b22823
Feng, B., Yao, C., Chen, S., Luo, R., Liu, S., & Tong, S. (2018). Highly efficient and selective recovery of Au(III) from a complex system by molybdenum disulfide nanoflakes. Chemical Engineering Journal, 350(Iii), 692–702. https://doi.org/10.1016/j.cej.2018.05.130
Fu, W., Ji, G., Chen, H., Yang, S., Guo, B., Yang, H., & Huang, Z. (2020). Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Separation and Purification Technology, 251(February), 117407. https://doi.org/10.1016/j.seppur.2020.117407
Guo, N., Li, H., Xu, X., & Yu, H. (2016). Hierarchical Fe 3 O 4 @MoS 2 /Ag 3 PO 4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation. Applied Surface Science, 389, 227–239. https://doi.org/10.1016/j.apsusc.2016.07.099
Hao, Y., Li, L., Zhang, J., Luo, H., Zhang, X., & Chen, E. (2017). Multilayer and open structure of dendritic crosslinked CeO2-ZrO2 composite: Enhanced photocatalytic degradation and water splitting performance. International Journal of Hydrogen Energy, 42(9), 5916–5929. https://doi.org/10.1016/j.ijhydene.2017.01.093
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun’ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563–568. https://doi.org/10.1038/nnano.2008.215
Huang, W., Liu, N., Zhang, X., Wu, M., & Tang, L. (2017). Metal organic framework g-C 3 N 4 /MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Applied Surface Science, 425(Vi), 107–116. https://doi.org/10.1016/j.apsusc.2017.07.050
Jawaid, A., Nepal, D., Park, K., Jespersen, M., Qualley, A., Mirau, P., Drummy, L. F., & Vaia, R. A. (2016). Mechanism for Liquid Phase Exfoliation of MoS2. Chemistry of Materials, 28(1), 337–348. https://doi.org/10.1021/acs.chemmater.5b04224
Jia, F., Sun, K., Yang, B., Zhang, X., Wang, Q., & Song, S. (2018). Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water. Desalination, 446(August), 21–30. https://doi.org/10.1016/j.desal.2018.08.024
Jia, F., Wang, Q., Wu, J., Li, Y., & Song, S. (2017). Two-Dimensional Molybdenum Disulfide as a Superb Adsorbent for Removing Hg2+ from Water. ACS Sustainable Chemistry and Engineering, 5(8), 7410–7419. https://doi.org/10.1021/acssuschemeng.7b01880
Jia, T., Kolpin, A., Ma, C., Chau-Ting Chan, R., Kwok, W. M., & Tsang, S. C. E. (2014). A graphene dispersed CdS–MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chemical Communications, 50(10), 1185–1188. https://doi.org/10.1039/c3cc47301e
Jiang, J., Wang, H., Chen, X., Li, S., Xie, T., Wang, D., & Lin, Y. (2017). Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. Journal of Colloid and Interface Science, 494, 130–138. https://doi.org/10.1016/j.jcis.2017.01.064
Jo, W. K., Lee, J. Y., & Selvam, N. C. S. (2016). Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications. Chemical Engineering Journal, 289, 306–318. https://doi.org/10.1016/j.cej.2015.12.080
Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
Kumar, S., Maivizhikannan, V., Drews, J., & Krishnan, V. (2019). Fabrication of nanoheterostructures of boron doped ZnO-MoS 2 with enhanced photostability and photocatalytic activity for environmental remediation applications. Vacuum, 163(July 2018), 88–98. https://doi.org/10.1016/j.vacuum.2019.02.001
Kumar, S., Sharma, V., Bhattacharyya, K., & Krishnan, V. (2016). Synergetic effect of MoS2-RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 40(6), 5185–5197. https://doi.org/10.1039/c5nj03595c
Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. In Water Research (Vol. 88). Elsevier Ltd. https://doi.org/10.1016/j.watres.2015.09.045
Lee, S. U., Jun, Y. S., Lee, E. Z., Heo, N. S., Hong, W. H., Huh, Y. S., & Chang, Y. K. (2015). Selective silver ion adsorption onto mesoporous graphitic carbon nitride. Carbon, 95, 58–64. https://doi.org/10.1016/j.carbon.2015.08.012
Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. Te, Chang, K. Di, Yu, Y. C., Wang, J. T. W., Chang, C. S., Li, L. J., & Lin, T. W. (2012). Synthesis of large-area MoS 2 atomic layers with chemical vapor deposition. Advanced Materials, 24(17), 2320–2325. https://doi.org/10.1002/adma.201104798
Li, Haiping, Liu, J., Hu, T., Du, N., Song, S., & Hou, W. (2016). Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance. Materials Research Bulletin, 77, 171–177. https://doi.org/10.1016/j.materresbull.2016.01.039
Li, Honglin, Yu, K., Lei, X., Guo, B., Li, C., Fu, H., & Zhu, Z. (2015). Synthesis of the MoS2@CuO heterogeneous structure with improved photocatalysis performance and H2O adsorption analysis. Dalton Transactions, 44(22), 10438–10447. https://doi.org/10.1039/c5dt01125f
Li, Honglin, Yu, K., Li, C., Guo, B., Lei, X., Fu, H., & Zhu, Z. (2015). Novel dual-petal nanostructured WS2@MoS2 with enhanced photocatalytic performance and a comprehensive first-principles investigation. Journal of Materials Chemistry A, 3(40), 20225–20235. https://doi.org/10.1039/c5ta05283a
Li, J., Liu, X., Pan, L., Qin, W., Chen, T., & Sun, Z. (2014). MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Advances, 4(19), 9647–9651. https://doi.org/10.1039/c3ra46956e
Li, M., Wang, J., Zhang, P., Deng, Q., Zhang, J., Jiang, K., Hu, Z., & Chu, J. (2017). Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: Experiments and theory. Scientific Reports, 7(February), 1–14. https://doi.org/10.1038/srep42484
Li, W., Feng, C., Dai, S., Yue, J., Hua, F., & Hou, H. (2015). Fabrication of sulfur-doped g-C/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Applied Catalysis B: Environmental, 168–169(C), 465–471. https://doi.org/10.1016/j.apcatb.2015.01.012
Li, Y., Wu, S., Huang, L., Xu, H., Zhang, R., Qu, M., Gao, Q., & Li, H. (2015). G-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids, 76, 112–119. https://doi.org/10.1016/j.jpcs.2014.08.012
Liang, D., Jing, T., Ma, Y., Hao, J., Sun, G., & Deng, M. (2016). Photocatalytic Properties of g-C6N6/g-C3N4 Heterostructure: A Theoretical Study. Journal of Physical Chemistry C, 120(42), 24023–24029. https://doi.org/10.1021/acs.jpcc.6b08699
Liao, G., Chen, S., Quan, X., Yu, H., & Zhao, H. (2012). Graphene oxide modified g-C 3N 4 hybrid with enhanced photocatalytic capability under visible light irradiation. Journal of Materials Chemistry, 22(6), 2721–2726. https://doi.org/10.1039/c1jm13490f
Lin, Y. C., Zhang, W., Huang, J. K., Liu, K. K., Lee, Y. H., Liang, C. Te, Chu, C. W., & Li, L. J. (2012). Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 4(20), 6637–6641. https://doi.org/10.1039/c2nr31833d
Liu, C., Wang, Q., Jia, F., & Song, S. (2019). Adsorption of heavy metals on molybdenum disulfide in water: A critical review. Journal of Molecular Liquids, 292, 111390. https://doi.org/10.1016/j.molliq.2019.111390
Liu, Chang, Jia, F., Wang, Q., Yang, B., & Song, S. (2017). Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Applied Materials Today, 9, 220–228. https://doi.org/10.1016/j.apmt.2017.07.009
Liu, Chunbo, Chen, J., Che, H., Huang, K., Charpentier, P. A., Xu, W. Z., Shi, W., & Dong, H. J. (2017). Construction and enhanced photocatalytic activities of a hydrogenated TiO2 nanobelt coated with CDs/MoS2 nanosheets. RSC Advances, 7(14), 8429–8442. https://doi.org/10.1039/c6ra28479e
Liu, J., Dong, C., Deng, Y., Ji, J., Bao, S., Chen, C., Shen, B., Zhang, J., & Xing, M. (2018). Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli. Water Research, 145, 312–320. https://doi.org/10.1016/j.watres.2018.08.039
Long, L. L., Chen, J. J., Zhang, X., Zhang, A. Y., Huang, Y. X., Rong, Q., & Yu, H. Q. (2016). Layer-controlled growth of MoS2 on self-assembled flower-like Bi2S3 for enhanced photocatalysis under visible light irradiation. NPG Asia Materials, 8(4), e263-9. https://doi.org/10.1038/am.2016.46
Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO 2 reduction performance of TiO 2 : a review. Applied Surface Science, 392, 658–686. https://doi.org/10.1016/j.apsusc.2016.09.093
Lu, X., Jin, Y., Zhang, X., Xu, G., Wang, D., Lv, J., Zheng, Z., & Wu, Y. (2016). Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Transactions, 45(39), 15406–15414. https://doi.org/10.1039/c6dt02247b
Luo, J., Fu, K., Sun, M., Yin, K., Wang, D., Liu, X., & Crittenden, J. C. (2019). Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS2. ACS Applied Materials and Interfaces, 11(42), 38789–38797. https://doi.org/10.1021/acsami.9b14019
Ma, C. B., Du, Y., Du, B., Wang, H., & Wang, E. (2018). Investigation of an eco-friendly aerogel as a substrate for the immobilization of MoS2 nanoflowers for removal of mercury species from aqueous solutions. Journal of Colloid and Interface Science, 525, 251–259. https://doi.org/10.1016/j.jcis.2018.04.079
Ma, L., Xu, L. M., Xu, X. Y., Luo, Y. L., & Chen, W. X. (2009). Synthesis and characterization of flower-like MoS2 microspheres by a facile hydrothermal route. Materials Letters, 63(23), 2022–2024. https://doi.org/10.1016/j.matlet.2009.06.039
Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105(13), 2–5. https://doi.org/10.1103/PhysRevLett.105.136805
Mário, E. D. A., Liu, C., Ezugwu, C. I., Mao, S., Jia, F., & Song, S. (2020). Molybdenum disulfide/montmorillonite composite as a highly efficient adsorbent for mercury removal from wastewater. Applied Clay Science, 184(November 2019), 105370. https://doi.org/10.1016/j.clay.2019.105370
Midya, A., Ghorai, A., Mukherjee, S., Maiti, R., & Ray, S. K. (2016). Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. Journal of Materials Chemistry A, 4(12), 4534–4543. https://doi.org/10.1039/c5ta09003b
Mousavi, M., & Habibi-Yangjeh, A. (2016). Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride. Journal of Colloid and Interface Science, 465, 83–92. https://doi.org/10.1016/j.jcis.2015.11.057
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B. I., Idrobo, J. C., Ajayan, P. M., & Lou, J. (2013). Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 12(8), 754–759. https://doi.org/10.1038/nmat3673
Ni, Z., Sun, Y., Zhang, Y., & Dong, F. (2016). Fabrication, modification and application of (BiO) 2 CO 3 -based photocatalysts: A review. Applied Surface Science, 365(2016), 314–335. https://doi.org/10.1016/j.apsusc.2015.12.231
Nitayaphat, W., & Jintakosol, T. (2015). Removal of silver(I) from aqueous solutions by chitosan/bamboo charcoal composite beads. Journal of Cleaner Production, 87(1), 850–855. https://doi.org/10.1016/j.jclepro.2014.10.003
Pan, L., Liu, X., Sun, Z., & Sun, C. Q. (2013). Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. Journal of Materials Chemistry A, 1(29), 8299–8326. https://doi.org/10.1039/c3ta10981j
Pearson, R. G. (1968). Hard and soft acids and bases, HSAB, part 1: Fundamental principles. Journal of Chemical Education, 45(9), 581. https://doi.org/10.1021/ed045p581
Peng, W. C., & Li, X. Y. (2014). Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catalysis Communications, 49, 63–67. https://doi.org/10.1016/j.catcom.2014.02.008
Peng, W., Li, H., Liu, Y., & Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 230, 496–504. https://doi.org/10.1016/j.molliq.2017.01.064
Peng, Y., Meng, Z., Zhong, C., Lu, J., Yang, Z., & Qian, Y. (2002). Tube- and ball-like amorphous MoS2 prepared by a solvothermal method. Materials Chemistry and Physics, 73(2–3), 327–329. https://doi.org/10.1016/S0254-0584(01)00364-9
Qi, Y., Luan, Y., Yang, M., Wang, G., Tan, L., & Li, J. (2014). Alkali concentration-dependent tailoring of highly controllable titanate nanostructures: From yolk-shell, hollow 3D nanospheres to 1D nanowires. Applied Surface Science, 293, 359–365. https://doi.org/10.1016/j.apsusc.2013.12.170
Qian, W., Greaney, P. A., Fowler, S., Chiu, S. K., Goforth, A. M., & Jiao, J. (2014). Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment. ACS Sustainable Chemistry and Engineering, 2(7), 1802–1810. https://doi.org/10.1021/sc5001176
Qiu, J., Zheng, W., Yuan, R., Yue, C., Li, D., Liu, F., & Zhu, J. (2020). A novel 3D nanofibrous aerogel-based MoS2@Co3S4 heterojunction photocatalyst for water remediation and hydrogen evolution under simulated solar irradiation. Applied Catalysis B: Environmental, 264(November 2019), 118514. https://doi.org/10.1016/j.apcatb.2019.118514
Renuka, L., Anantharaju, K. S., Vidya, Y. S., Nagaswarupa, H. P., Prashantha, S. C., Sharma, S. C., Nagabhushana, H., & Darshan, G. P. (2017). A simple combustion method for the synthesis of multi-functional ZrO2/CuO nanocomposites: Excellent performance as Sunlight photocatalysts and enhanced latent fingerprint detection. Applied Catalysis B: Environmental, 210, 97–115. https://doi.org/10.1016/j.apcatb.2017.03.055
Shahzad, A., Jang, J., Lim, S. R., & Lee, D. S. (2020). Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption. Environmental Research, 182(September 2019), 109005. https://doi.org/10.1016/j.envres.2019.109005
Shi, Y., Zhou, W., Lu, A. Y., Fang, W., Lee, Y. H., Hsu, A. L., Kim, S. M., Kim, K. K., Yang, H. Y., Li, L. J., Idrobo, J. C., & Kong, J. (2012). Van der Waals epitaxy of MoS 2 layers using graphene as growth templates. Nano Letters, 12(6), 2784–2791. https://doi.org/10.1021/nl204562j
Smith, R. J., King, P. J., Lotya, M., Wirtz, C., Khan, U., De, S., O’Neill, A., Duesberg, G. S., Grunlan, J. C., Moriarty, G., Chen, J., Wang, J., Minett, A. I., Nicolosi, V., & Coleman, J. N. (2011). Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials, 23(34), 3944–3948. https://doi.org/10.1002/adma.201102584
Song, H. J., You, S., Jia, X. H., & Yang, J. (2015). MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceramics International, 41(10), 13896–13902. https://doi.org/10.1016/j.ceramint.2015.08.023
Su, J., Bi, L., Wang, C., Lyu, T., & Pan, G. (2019). Enhancement of cadmium removal by oxygen-doped carbon nitride with molybdenum and sulphur hybridization. Journal of Colloid and Interface Science, 556, 606–615. https://doi.org/10.1016/j.jcis.2019.08.104
Sun, T., Zhao, Z., Liang, Z., Liu, J., Shi, W., & Cui, F. (2017). Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO 2 -Fe 3 O 4 magnetic nanoparticles. Applied Surface Science, 416, 656–665. https://doi.org/10.1016/j.apsusc.2017.04.137
Tan, X., Kang, W., Liu, J., & Zhang, C. (2019). Synergistic Exfoliation of MoS2 by Ultrasound Sonication in a Supercritical Fluid Based Complex Solvent. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3126-4
Tan, Y. H., Yu, K., Li, J. Z., Fu, H., & Zhu, Z. Q. (2014). MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties. Journal of Applied Physics, 116(6). https://doi.org/10.1063/1.4893020
Tang, L., Jia, C. tao, Xue, Y. cheng, Li, L., Wang, A. qi, Xu, G., Liu, N., & Wu, M. hong. (2017). Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation. Applied Catalysis B: Environmental, 219, 241–248. https://doi.org/10.1016/j.apcatb.2017.07.053
Tisseraud, C., Comminges, C., Pronier, S., Pouilloux, Y., & Le Valant, A. (2016). The Cu–ZnO synergy in methanol synthesis Part 3: Impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. Journal of Catalysis, 343, 106–114. https://doi.org/10.1016/j.jcat.2015.12.005
Tong, S., Deng, H., Wang, L., Huang, T., Liu, S., & Wang, J. (2018). Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chemical Engineering Journal, 335(August 2017), 22–31. https://doi.org/10.1016/j.cej.2017.10.056
Vassileva, P., Tzvetkova, P., Lakov, L., & Peshev, O. (2008). Thiouracil modified activated carbon as a sorbent for some precious and heavy metal ions. Journal of Porous Materials, 15(5), 593–599. https://doi.org/10.1007/s10934-007-9138-y
Vattikuti, S. V. P., & Byon, C. (2016). Bi2S3 nanorods embedded with MoS2 nanosheets composite for photodegradation of phenol red under visible light irradiation. Superlattices and Microstructures, 100, 514–525. https://doi.org/10.1016/j.spmi.2016.10.012
Wan, J., Du, X., Liu, E., Hu, Y., Fan, J., & Hu, X. (2017). Z-scheme visible-light-driven Ag3PO4nanoparticle@MoS2quantum dot/few-layered MoS2nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. Journal of Catalysis, 345, 281–294. https://doi.org/10.1016/j.jcat.2016.11.013
Wang, H., Bai, Y., Yang, J., Lang, X., Li, J., & Guo, L. (2012). A facile way to rejuvenate Ag 3PO 4 as a recyclable highly efficient photocatalyst. Chemistry - A European Journal, 18(18), 5524–5529. https://doi.org/10.1002/chem.201103189
Wang, Q., Yun, G., Bai, Y., An, N., Lian, J., Huang, H., & Su, B. (2014). Photodegradation of rhodamine B with MoS 2 /Bi 2 O 2 CO 3 composites under UV light irradiation. Applied Surface Science, 313, 537–544. https://doi.org/10.1016/j.apsusc.2014.06.018
Wang, Zhen, Chen, T., Chen, W., Chang, K., Ma, L., Huang, G., Chen, D., & Lee, J. Y. (2013). CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. Journal of Materials Chemistry A, 1(6), 2202–2210. https://doi.org/10.1039/c2ta00598k
Wang, Zhongying, & Mi, B. (2017). Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environmental Science and Technology, 51(15), 8229–8244. https://doi.org/10.1021/acs.est.7b01466
Wang, Zhongying, Sim, A., Urban, J. J., & Mi, B. (2018). Removal and Recovery of Heavy Metal Ions by Two-dimensional MoS2 Nanosheets: Performance and Mechanisms. Environmental Science and Technology, 52(17), 9741–9748. https://doi.org/10.1021/acs.est.8b01705
Wang, Zhongying, Zhu, W., Qiu, Y., Yi, X., Von Dem Bussche, A., Kane, A., Gao, H., Koski, K., & Hurt, R. (2016). Biological and environmental interactions of emerging two-dimensional nanomaterials. Chemical Society Reviews, 45(6), 1750–1780. https://doi.org/10.1039/c5cs00914f
Wang, Zongwu, Zhang, J., Wen, T., Liu, X., Wang, Y., Yang, H., Sun, J., Feng, J., Dong, S., & Sun, J. (2020). Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Science of the Total Environment, 699, 134341. https://doi.org/10.1016/j.scitotenv.2019.134341
Wu, M. hong, Li, L., Liu, N., Wang, D. jin, Xue, Y. cheng, & Tang, L. (2018). Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Safety and Environmental Protection, 118, 40–58. https://doi.org/10.1016/j.psep.2018.06.025
Wu, P., Wu, W., Li, S., Xing, N., Zhu, N., Li, P., Wu, J., Yang, C., & Dang, Z. (2009). Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite. Journal of Hazardous Materials, 169(1–3), 824–830. https://doi.org/10.1016/j.jhazmat.2009.04.022
Xiang, Q., Cheng, B., & Yu, J. (2015). Graphene-Based Photocatalysts for Solar-Fuel Generation. Angewandte Chemie - International Edition, 54(39), 11350–11366. https://doi.org/10.1002/anie.201411096
Xiang, Z., Wang, Y., Zhang, D., & Ju, P. (2016). BiOI/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. Journal of Industrial and Engineering Chemistry, 40, 83–92. https://doi.org/10.1016/j.jiec.2016.06.009
Xie, J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B., & Xie, Y. (2014). Erratum: Controllable disorder engineering in oxygen-incorporated MoS 2 ultrathin nanosheets for efficient hydrogen evolution (Journal of the American Chemical Society (2013) 135 (17881-17888)). Journal of the American Chemical Society, 136(4), 1680. https://doi.org/10.1021/ja4129636
Xiong, F., Zhang, J., Zhu, Z., Yuan, X., & Qin, S. (2015). Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping. Scientific Reports, 5(November), 1–8. https://doi.org/10.1038/srep16998
Xiong, X., Ding, L., Wang, Q., Li, Y., Jiang, Q., & Hu, J. (2016). Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed (0 1 0) facets. Applied Catalysis B: Environmental, 188, 283–291. https://doi.org/10.1016/j.apcatb.2016.02.018
Xu, C., Xu, B., Gu, Y., Xiong, Z., Sun, J., & Zhao, X. S. (2013). Graphene-based electrodes for electrochemical energy storage. Energy and Environmental Science, 6(6), 1388–1414. https://doi.org/10.1039/c3ee23870a
Yi-Zhu, P., Wan-Hong, M., Man-Ke, J., Xiao-Rong, Z., Johnson, D. M., & Ying-Ping, H. (2016). Comparing the degradation of acetochlor to RhB using BiOBr under visible light: A significantly different rate-catalyst dose relationship. Applied Catalysis B: Environmental, 181, 517–523. https://doi.org/10.1016/j.apcatb.2015.08.002
Yuan, Y. J., Ye, Z. J., Lu, H. W., Hu, B., Li, Y. H., Chen, D. Q., Zhong, J. S., Yu, Z. T., & Zou, Z. G. (2016). Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation. ACS Catalysis, 6(2), 532–541. https://doi.org/10.1021/acscatal.5b02036
Yuan, Y., Shen, P., Li, Q., Chen, G., Zhang, H., Zhu, L., Zou, B., & Liu, B. (2017). Excellent photocatalytic performance of few-layer MoS2/graphene hybrids. Journal of Alloys and Compounds, 700, 12–17. https://doi.org/10.1016/j.jallcom.2017.01.027
Yusan, S., Gok, C., Erenturk, S., & Aytas, S. (2012). Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data. Applied Clay Science, 67–68, 106–116. https://doi.org/10.1016/j.clay.2012.05.012
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., & Zhang, H. (2011). Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angewandte Chemie, 123(47), 11289–11293. https://doi.org/10.1002/ange.201106004
Zhang, G., Huang, C., & Wang, X. (2015). Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small, 11(9–10), 1215–1221. https://doi.org/10.1002/smll.201402636
Zhang, J. J., Gao, B., & Dong, S. (2016). Strain-enhanced superconductivity of MoX2(X=S-or Se) bilayers with Na intercalation. Physical Review B, 93(15), 1–6. https://doi.org/10.1103/PhysRevB.93.155430
Zheng, Y., Zhang, W., Li, Y., Chen, J., Yu, B., Wang, J., Zhang, L., & Zhang, J. (2017). Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 40, 512–539. https://doi.org/10.1016/j.nanoen.2017.08.049
Zhong, X. L., & Li, Z. Y. (2012). Giant enhancement of near-ultraviolet light absorption by TiO 2 via a three-dimensional aluminum plasmonic nano funnel-antenna. Journal of Physical Chemistry C, 116(40), 21547–21555. https://doi.org/10.1021/jp306562u
Zhou, G., Xu, X., Yu, J., Feng, B., Zhang, Y., Hu, J., & Zhou, Y. (2014). Vertically aligned MoS2/MoOxheterojunction nanosheets for enhanced visible-light photocatalytic activity and photostability. CrystEngComm, 16(38), 9025–9032. https://doi.org/10.1039/c4ce01169d
Zhu, C., Zhang, L., Jiang, B., Zheng, J., Hu, P., Li, S., Wu, M., & Wu, W. (2016). Fabrication of Z-scheme Ag 3 PO 4 /MoS 2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Applied Surface Science, 377, 99–108. https://doi.org/10.1016/j.apsusc.2016.03.143
Zou, X., Dong, Y., Zhang, X., Cui, Y., Ou, X., & Qi, X. (2017). The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO 4 /BiOBr p-n heterojunction composites. Applied Surface Science, 391, 525–534. https://doi.org/10.1016/j.apsusc.2016.06.003
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Carlos Alves do Nascimento Filho ; Helinando Pequeno de Oliveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.