Correlaciones en series temporales de precios de pollo, soja y maíz
DOI:
https://doi.org/10.33448/rsd-v10i4.14019Palabras clave:
Commodities; Detrended Cross Correlation Analysis; Detrended Cross Correlation Coefficient; Crisis alimentaria.Resumen
La evolución del mercado agrícola brasileño ha cambiado el proceso de producción, exportación y consumo de productos alimenticios. Con esto, se han desarrollado nuevos estudios sobre la relación entre el mercado de alimentos y otros mercados, buscando explicar el vínculo entre los precios de commodities agrícolas y no agrícolas. Con el objetivo de contribuir a este estudio, fueron investigadas aquí las correlaciones intrínsecas de largo plazo entre los mercados de alimentos brasileños, utilizando técnicas de Econofísica. Así, se analizaron las series diarias de precios y retorno de precios de la carne de pollo, soja y maíz registradas entre 02/02/2004 y 16/06/2017 por el Centro de Estudos Avançados em Economia Aplicada / Escola Superior de Agricultura Luiz de Queiroz / Universidade de São Paulo - CEPEA/ESALQ/USP. Las correlaciones se analizaron utilizando los métodos Detrended Fluctuation Analysis (DFA) y Detrended Cross Correlation Analysis (DCCA), para calcular el Detrended Cross Correlation Coefficient (DCCA Coefficient), que sirve para cuantificar las correlaciones cruzadas a largo plazo entre series temporales no estacionarias. Los resultados apuntan a la ausencia de correlaciones cruzadas para escalas temporales de hasta 30 días y, para escalas mayores, indican correlaciones más fuertes entre los precios de pollo y maíz que entre los precios de pollo y de soja. Después de la crisis alimentaria de 2008, entretanto, las correlaciones entre las series diarias de retorno de precios del pollo y del maíz disminuyeron, mientras que, entre las de pollo y soja, aumentaron en las escalas menores y disminuyeron en las escalas mayores.
Citas
Araújo, C. C. (2019). Utilização do arroz, quirera e farelo de arroz integral na alimentação de frangos de crescimento lento. Dissertação de Mestrado em Ciência Animal Tropical, Programa de Pós-Graduação em Ciência Animal Tropical, Universidade Federal do Tocantins. Araguaína. Obtido em: http://hdl.handle.net/11612/1485.
Beckmann, J., & Czudaj, R. (2014). Volatility transmission in agricultural futures markets. Economic Modelling, 36, 541-546.
Bini, D. A., Canever, M. D., de Souza, M. O., & Ely, R. A. (2016). Transmissão de preços ao longo das cadeias produtivas do Brasil. Revista de Economia, 42(1).
CEPEA/ESALQ/USP. (2020). Consultas ao Banco de Dados do Site - Centro de Estudos Avançados em Economia Aplicada - CEPEA-Esalq/USP. Recuperado de https://www.cepea.esalq.usp.br/br/consultas-ao-banco-de-dados-do-site.aspx
Chen, Y., Cai, L., Wang, R., Song, Z., Deng, B., Wang, J., & Yu, H. (2018). DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients. Physica A: Statistical Mechanics and its Applications, 490, 171-184.
da Silva, M. F., Pereira, É. J. D. A. L., da Silva Filho, A. M., de Castro, A. P. N., Miranda, J. G. V., & Zebende, G. F. (2016). Quantifying the contagion effect of the 2008 financial crisis between the G7 countries (by GDP nominal). Physica A: Statistical Mechanics and its Applications, 453, 1-8.
de Nicola, F., De Pace, P., & Hernandez, M. A. (2016). Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Economics, 57, 28-41.
Nunes, J. E. O., da Silva, J. M., Araújo, L. S., Moreira, G. R., Stosic, T., & Stosic, B. (2021). Análise de grafos de visibilidade do mercado brasileiro de soja, milho e carne de frango. Research, Society and Development, 10(1), e39210111478-e39210111478.
de Santana, L. I. T., da Silva, J. M., Araújo, L. S., Moreira, G. R., & Stosic, T. (2020). Análise de quantificação de recorrência de preços brasileiros do milho, da soja e da carne de frango. Research, Society and Development, 9(10), e9979109461-e9979109461.
Dey, P., & Mujumdar, P. P. (2018). Multiscale evolution of persistence of rainfall and streamflow. Advances in water resources, 121, 285-303.
dos Anjos, P. S., da Silva, A. S. A., Stošić, B., & Stošić, T. (2015). Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil. Physica A: Statistical Mechanics and its Applications, 424, 90-96.
EMBRAPA (2020). Maiores produtores mundiais de carne de frango. Obtido em: https://www.embrapa.br/suinos-e-aves/cias/estatisticas/frangos/mundo.
Ferreira, P., Pereira, É. J. D. A. L., da Silva, M. F., & Pereira, H. B. (2019). Detrended correlation coefficients between oil and stock markets: The effect of the 2008 crisis. Physica A: Statistical Mechanics and its Applications, 517, 86-96.
Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P. C., Peng, C. K., & Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the national academy of sciences, 99(suppl 1), 2466-2472.
Jiang, L., Zhao, X., & Wang, L. (2016). Long-range correlations of global sea surface temperature. PloS one, 11(4), e0153774.
Jun, W., & Da-Qing, Z. (2012). Detrended cross-correlation analysis of electroencephalogram. Chinese Physics B, 21(2), 028703.
Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). Detecting long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 295(3-4), 441-454.
Lima, C. R. A., de Melo, G. R., Stosic, B., & Stosic, T. (2019). Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar. Physica A: Statistical Mechanics and its Applications, 513, 687-693.
Liu, L. (2014). Cross-correlations between crude oil and agricultural commodity markets. Physica A: Statistical Mechanics and its Applications, 395, 293-302.
Løvsletten, O. (2017). Consistency of detrended fluctuation analysis. Physical Review E, 96(1), 012141.
Oliveira Junior, O. D. P., Wander, A. E., & Figueiredo, R. S. (2014). Relação entre os preços do milho, da soja e da carne de frango no período de 2004 a 2013. In Embrapa Arroz e Feijão-Artigo em anais de congresso (ALICE). In: CONGRESSO DA SOCIEDADE BRASILEIRA DE ECONOMIA, ADMINISTRAÇÃO E SOCIOLOGIA RURAL, 52., 2014, Goiânia. Heterogeneidade e suas implicações no rural brasileiro: anais. Goiânia: Sober, 2014..
Pal, D., & Mitra, S. K. (2018). Interdependence between crude oil and world food prices: A detrended cross correlation analysis. Physica A: Statistical Mechanics and its Applications, 492, 1032-1044.
Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical review e, 49(2), 1685.
Pereira, A. F. C., de Melo, A. F., Justo, W. R., & da Silva Melo, S. R. (2016). Cointegration and price transmission in poultry in Pernambuco. Informe GEPEC, 20(1), 129.
Piao, L., Fu, Z., & Yuan, N. (2016). “Intrinsic” correlations and their temporal evolutions between winter-time PNA/EPW and winter drought in the west United States. Scientific reports, 6(1), 1-10.
Podobnik, B., Horvatic, D., Petersen, A. M., & Stanley, H. E. (2009). Cross-correlations between volume change and price change. Proceedings of the National Academy of Sciences, 106(52), 22079-22084..
Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Physical review letters, 100(8), 084102.
Qian, X. Y., Liu, Y. M., Jiang, Z. Q., Podobnik, B., Zhou, W. X., & Stanley, H. E. (2015). Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces. Physical Review E, 91(6), 062816.
Shen, C. H., & Li, C. L. (2016). An analysis of the intrinsic cross-correlations between API and meteorological elements using DPCCA. Physica A: Statistical Mechanics and its Applications, 446, 100-109.
Stosic, T., Telesca, L., da Costa, S. L. L., & Stosic, B. (2016). Identifying drought-induced correlations in the satellite time series of hot pixels recorded in the Brazilian Amazon by means of the detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 444, 660-666.
FAS/USDA (2021). Foreign Agricultural Service, United States Department of Agriculture. Disponível em: https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery.
Vassoler, R. T., & Zebende, G. F. (2012). DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Statistical Mechanics and its Applications, 391(7), 2438-2443.
Xu, N., Shang, P., & Kamae, S. (2010). Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dynamics, 61(1), 207-216.
Yamasaki, K., Muchnik, L., Havlin, S., Bunde, A., & Stanley, H. E. (2005). Scaling and memory in volatility return intervals in financial markets. Proceedings of the National Academy of Sciences, 102(26), 9424-9428.
Yuan, N., Fu, Z., Zhang, H., Piao, L., Xoplaki, E., & Luterbacher, J. (2015). Detrended partial-cross-correlation analysis: a new method for analyzing correlations in complex system. Scientific reports, 5(1), 1-7.
Zebende, G. F. (2011). DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Physica A: Statistical Mechanics and its Applications, 390(4), 614-618.
Zebende, G. F., Da Silva, M. F., & Machado Filho, A. (2013). DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches. Physica A: Statistical Mechanics and its Applications, 392(8), 1756-1761.
Zheng, Z., Yamasaki, K., Tenenbaum, J., Podobnik, B., Tamura, Y., & Stanley, H. E. (2012). Scaling of seismic memory with earthquake size. Physical Review E, 86(1), 011107.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ruben Vivaldi Silva Pessoa; Ikaro Daniel de Carvalho Barreto; Lidiane da Silva Araújo; Guilherme Rocha Moreira; Tatijana Stosic; Borko Stosic
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.