Evaluación del uso de microemulsiones a base de aceite saponificado de Moringa Oleifera Lam como fase continua de fluidos de perforación: Análisis de propiedades reológicas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.14188

Palabras clave:

Rheological parameters; Microemulsión; Fluido de perforación; Parámetros reológicos.

Resumen

En la exploración petrolera, una de las principales actividades es la perforación de pozos, en la que es necesario utilizar los llamados fluidos de perforación. Debido a su gran importancia, se ha buscado desarrollar fluidos de perforación con propiedades mejoradas y, para ello, estudios demuestran que los sistemas microemulsificados pueden ser viables para esta aplicación, ya que son más estables que los sistemas emulsionados, lo que los hace más eficientes. El objetivo de este trabajo fue el desarrollo de un fluido de perforación utilizando sistemas microemulsionados a base de aceite saponificado de Moringa Oleifera Lam como su fase continua. En el desarrollo del sistema microemulsionado se utilizó agua destilada (fase acuosa), aceite de moringa (fase aceitosa), aceite de moringa saponificado (tensioactivo) y n-butanol (agente coactivo) y una relación Cotensoativo / Tensoactivo igual a 1. Después de la preparación del En el sistema microemulsionado, se agregaron aditivos: Goma Xantana (viscosificante) y Baritina (espesante). Para la caracterización del fluido se realizaron estudios reológicos para determinar parámetros como el límite de flujo, índice de comportamiento, índice de consistencia y grado de tixotropía, variando la concentración de viscosificante en 4%, 6% y 8%. Los resultados obtenidos mostraron que los fluidos mostraron un comportamiento pseudoplástico, siguiendo el modelo de Herschell-Bulkley y de acuerdo con otros estudios con fluidos microemulsificados. Además, con el aumento en el porcentaje de viscosificantes, se observaron mejoras en las propiedades del fluido, como límite de flujo y grado tixotrópico.

Citas

Andrade, W. A., Cruz, G. P., Santos, M. F. O., Silva, G. F., Silva, M. S. & Santos, J. P. L. (2020). Síntese de um tensoativo a base de óleo de Moringa Oleífera Lam. e formulação de sistemas microemulsionados para a quebra de emulsões do tipo água em óleo. Research, Society and Development, 9 (2), e193922194.

Borges, T.A. (2014). Análise da Reologia e do Escoamento de um Fluido de Perfuração a partir de Microemulsão a Base de Óleo Vegetal. Trabalho de Graduação, Natal, RN.

Caenn, R. & Chillingar, G. V. (1996). Drilling Fluids: State of the Art. Journal of Petroleum Science and Engineering, 14, 221-230.

Candia, J.-L. F. & Deckwer, W.-D. (1999). Effect of the Nitrogen Source on Pyruvate Content and Rheological Properties of Xanthan. Biotechnol Progress, 15: 446–452.

Curbelo, F. D. S., Garnica, A. I. C., Nascimento, B. S. C., Leal, G. L. R., Tertuliano, T. M. & Silva, R. R. (2021). Influence of the oleic phase and co-surfactant addition in non-ionic microemulsified systems. Research, Society and Development, v. 10, n. 2, e58410212902.

Curbelo, F. D. S., Sousa, R. P. F., Garniça, A. I. C., Aranha, R. M., Freitas, J. C. O. & Braga, G. S. (2016). Estudo Reológico de um Fluido de Perfuração Microemulsionado. In: XXI CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, Fortaleza (CE), Editora Realize.

Diaz, P. S., Vendruscolo, C. T. & Vendruscolo, J. L. S. (2004). Reologia de Xantana: uma Revisão sobre a Influência de Eletrólitos na Viscosidade de Soluções Aquosas de Gomas Xantana. Semina: Ciências Exatas e Tecnológicas, v. 25, n. 1, 5–28.

Garnica, A. I. C., Curbelo, F. D. S., Queiroz, I. X., Araújo, E. A., Sousa, R. P. F., Paiva, E. M., Braga, G. S. & Araújo, E. A. (2020). Desenvolvimento de microemulsões como aditivo lubrificante em fluido de perfuração. Research, Society and Development, v. 9, n. 7, e212973703.

Gonçalves, S. S. G. (2018). Desenvolvimento de fluidos de perfuração poliméricos a base de microemulsões e avaliação de suas propriedades. Dissertação de MSc, Natal, RN.

Gray, G. R., Darley, H.C.H. & Caenn, R. (2014) Fluidos de perfuração e completação, 6 ed., Rio de Janeiro, Elsevier.

Green, H. & Weltmann, R.N. (1946). Equations of thixotropic breakdown for rotational viscometer. Industrial & Engineering Chemistry Analytical Edition, v. 18, n. 3, 167- 172.

Lucena, L. C. F. L., Silveira, I. V. & Costa, D. B. (2016). Avaliação de ligantes asfálticos modificados com óleo da Moringa Oleífera Lam para uso em misturas mornas. Revista Matéria, 11681, 72-82.

Machado, J.C.V. (2002). Reologia e escoamento de fluidos: Ênfase na indústria do petróleo, 1 ed., Rio de Janeiro, Interciência.

Mairs, H., Smith, J, Melton, R., Pasmore, F. & Maruca, S. (2000). Efeitos Ambientais dos Cascalhos Associados a Fluidos Não Aquosos: Fundamentos Técnicos.

Melo, K. C. (2008). Avaliação e Modelagem Reológica de Fluidos de Perfuração Base Água. Dissertação de MSc, Natal, RN.

Petrobras. (1998). Viscosificante para fluido de perfuração base de água na exploração e produção de petróleo. Especificação, N-2604. Rio de Janeiro, Brasil.

Ramalho, W. J. C. R., Souza, M. F., Ferreira, H. S. (2021). Investigação do efeito viscosificante e estabilizante de argilas hidrofílica e hidrofóbica em fluidos emulsionados de base oleoso. Research, Society and Development, v. 10, n. 3, 1-13, e3910312927.

Ratkievicius, L. A. (2015). Avaliação de argila modificada por tensoativo para aplicação em fluido de perfuração a base de óleo vegetal. Dissertação de MSc, Natal, RN.

Santos, T. G. M. (2013). Avaliação de modelos de tixotropia aplicados a fluidos de perfuração. Monografia (Graduação), Curitiba, PR.

Shiroma, P. H. (2012). Estudo do comportamento reológico de suspensões aquosas de bentonita e CMC: influência da concentração do NaCl. Dissertação de MSc, São Paulo, SP.

Silva, G. C. (2011). Sistema microemulsionado: Caracterização e aplicação na indústria do petróleo. 2011. p25. Tese de DSc. Curso de Pós-Graduação em Química, Natal, RN.

Silva, S. S. S., Nóbrega, K. C., Amorim, L. V. & Lira, H. L. (2019). Avaliação de amidos modificados empregados na mineração para aplicação em fluidos de perfuração de poços de petróleo. Revista Matéria, v.24, n.03, e-12427.

Sousa, R. P. F., Curbelo, F. D. S., Garnica, A. I. C., Araujo, E. A., Freitas, J. C. O. & Braga, G. S. (2020). Efeito da goma xantana e da bentonita no desempenho de um fluido de perfuração base microemulsão. Holos, ano 36, v.2, e7358.

Souza, F. M., Soares, J. M. D., Oliveira, H. P., Rigoli, I. C., Luporini, S. (2020). Rheological assessment of the interaction between hydrophobic nanoclay and xanthan gum in saline environment, for application in drilling nanofluid. Research, Society and Development, v. 9, n. 7, 1-45, e789974669.

Souza, D. R. Q. A., Ferreira, G. F. D., Lobato, A. K. C. L., Silva, A. C. M. & Santos, L. C. L. (2016). Influência do cotensoativo em sistemas microemulsionados. Revista Eletrônica de Petróleo e Gás, 4, 2, 33-42.

Souza, D. R. Q. A.; Oliveira, L. A.; Ferreira, G. F. D.; Lobato, A. K. C. L. & Santos, L. C. L. (2015). Avaliação de tensoativos comerciais em sistemas microemulsionados na quebra de emulsão de petróleo In Anais...I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis, Campina Grande, PB, Brasil.

Souza, G. S., Luporini, S. & Rigoli, I. C. (2017). Caracterização reológica de suspensões argilosas salinas com goma xantana para fluidos de perfuração de poços de petróleo. Revista Matéria, v.22, n.01, e11796.

Thomas, J. E. (2004). Fundamentos de engenharia de petróleo, 2 ed., Rio de Janeiro, Interciência, 2004.

Waldmann, A. T. A., Branco, M. A. & Martins, A. (2007). Rheological characterization of polymer solutions for oil well drilling applications. In: Proceedings of the XI International Macromolecular Colloquium, Gramado, RS, Brasil.

Publicado

12/04/2021

Cómo citar

CRUZ, G. P. da; ANDRADE, W. dos A.; SILVA, L. A. da .; CUNHA, A. de L.; SILVA, G. F. da .; SANTOS, J. P. L. dos. Evaluación del uso de microemulsiones a base de aceite saponificado de Moringa Oleifera Lam como fase continua de fluidos de perforación: Análisis de propiedades reológicas. Research, Society and Development, [S. l.], v. 10, n. 4, p. e30910414188, 2021. DOI: 10.33448/rsd-v10i4.14188. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14188. Acesso em: 21 dic. 2024.

Número

Sección

Ingenierías