Propiedades biológicas de la Oncocalyxona A: una revisión
DOI:
https://doi.org/10.33448/rsd-v10i4.14343Palabras clave:
Quinonas; Propiedades químicas; Sustancia aislada; Perfil de actividad; Productos naturales; Metabolitos secundarios.Resumen
Las quinonas son un ejemplo clásico de moléculas aisladas de productos naturales. Estos son metabolitos secundarios de plantas, hongos, bacterias e insectos, y corresponden a una clase química interesante que se encuentra ubicuamente en la naturaleza. La [rel-8α-hidroxi-5-hidroximetil-2-metoxi-8α, β-metil-7, 8, 8a, 9-tetahidro-1, 4-antracenodiona] [oncocalyxona A, onco-A] una benzoquinona de color oscuro color rojo aislado del extracto etanólico de la especie Cordia oncocalyx (Auxemma oncocalyx Allem). En esta revisión, proponemos investigar las principales actividades biológicas descritas para la oncocalyxona A, desde su aislamiento hasta el proceso de caracterización. Métodos. Para esta revisión, se emplearon los siguientes descriptores en múltiples bases de datos: plantas medicinales, quinonas, Auxemma oncocalyx, Cordia oncocalyx, actividad biológica. Además, se utilizaron como criterios de inclusión artículos experimentales publicados en revistas internacionales y con texto completo disponible. Resultados y discusión. Los perfiles de actividad biológica encontrados para onco-A según la literatura fueron: antiproliferativo/citotóxico en leucemia, tumor de pulmón [SW1573] y fibroblastos de piel normal [CCD922]; antiinflamatorio y analgésico; efecto inhibidor sobre el crecimiento celular y la reactividad del ADN; actividad antiplaquetaria; potencial antitumoral; agente anti-glicación; potencial beneficioso y / o tóxico en cabras y efecto neuroinhibidor; actividad antibacteriana y antibiofilm. La sustancia tiene un amplio espectro de aplicaciones farmacológicas, la mayoría de las cuales están interconectadas con la actividad citotóxica. El trabajo busca, además de recopilar las actividades descritas en la literatura, comprender cómo actúa la molécula sobre las distintas dianas, pero, en algunos casos, se necesita una investigación más profunda para dilucidar los mecanismos de acción de la misma.
Citas
Abraham, I., Joshi, R., Pardasani, P., & Pardasani, R. T. (2011). Recent advances in 1, 4-benzoquinone chemistry. Journal of the Brazilian Chemical Society, 22(3), 385-421. https://www.scielo.br/scielo.php?pid=S0103-50532011000300002&script=sci_arttext.
Barreto, A. C., Santiago, V. R., Freire, R. M., Mazzetto, S. E., Denardin, J. C., Mele, G., ... & Fechine, P. (2013). Magnetic nanosystem for cancer therapy using oncocalyxone A, an antitomour secondary metabolite isolated from a Brazilian plant. International journal of molecular sciences, 14(9), 18269-18283. https://www.mdpi.com/1422-0067/14/9/18269.
Bayen, S., Barooah, N., Sarma, R. J., Sen, T. K., Karmakar, A., & Baruah, J. B. (2007). Synthesis, structure and electrochemical properties of 2, 5-bis (alkyl/arylamino) 1, 4-benzoquinones and 2-arylamino-1, 4-naphthoquinones. Dyes and Pigments, 75(3), 770-775. https://www.sciencedirect.com/science/article/pii/S0143720806003172.
Bezerra, D. R. C., do Espírito Santo, F. H., Monteiro, J. K. D. M. F., & Muto, T. S. (2020). Os vulneráveis no período do COVID-19: uma revisão integrativa de literatura. Research, Society and Development, 9(10), e4699108860-e4699108860. https://rsdjournal.org/index.php/rsd/article/view/8860/7816.
Braga, R. (2001). Plantas do Nordeste: especialmente do Ceará. Fundação Guimaraes Duque. https://ci.nii.ac.jp/naid/10006226843/.
Costa, C. D. O., Costa, E. D. O., Ferreira, F. D. R., Viana, L. D. S., Silva, L. V. D., Silva, F. D. A., ... & Goulart, M. O. (2012). Oncocalyxone A: electrochemical, spectroscopic investigation and studies of its interaction with DNA, nucleobases and N-acetylcysteine. Journal of the Brazilian Chemical Society, 23(6), 1174-1185. https://www.scielo.br/scielo.php?pid=S0103-50532012000600024&script=sci_arttext&tlng=es.
Costa-Lotufo, L. V., Ferreira, M. A. D., Lemos, T. L. G., Pessoa, O. D. L., Viana, G. S. B., & Cunha, G. M. A. (2002). Toxicity to sea urchin egg development of the quinone fraction obtained from Auxemma oncocalyx. Brazilian journal of medical and biological research, 35(8), 927-930. https://www.scielo.br/scielo.php?pid=S0100-879X2002000800010&script=sci_arttext.
Da Silva, R. E., Ribeiro, F. D. O. S., de Carvalho, A. M. A., Daboit, T. C., Marinho-Filho, J. D. B., Matos, T. S., ... & dos Santos Soares, M. J. (2020). Antimicrobial and antibiofilm activity of the benzoquinone oncocalyxone A. Microbial Pathogenesis, 149, 104513. https://www.researchgate.net/profile/Rai_Silva3/publication/344331196_Antimicrobial_and_antibiofilm_activity_of_the_benzoquinone_oncocalyxone_A/links/60078310299bf14088aa59d0/Antimicrobial-and-antibiofilm-activity-of-the-benzoquinone-oncocalyxone-A.pdf.
De Lima, M. R. F., de Souza Luna, J., Dos Santos, A. F., De Andrade, M. C. C., Sant’Ana, A. E. G., Genet, J. P., ... & Moreau, N. (2006). Anti-bacterial activity of some Brazilian medicinal plants. Journal of Ethnopharmacology, 105(1-2), 137-147. https://www.sciencedirect.com/science/article/abs/pii/S0378874105007452.
De Lucas, N. C., Ferreira, A. B., & Netto-Ferreira, J. C. (2015). Fotoquímica de naftoquinonas. Revista Virtual de Química, 7(1), 403-463. http://rvq-sub.sbq.org.br/index.php/rvq/article/view/997.
De Oliveira, A. S., Brighente, I. M., Lund, R. G., Llanes, L. C., Nunes, R. J., Bretanha, L. C., ... & Ribeiro, J. S. (2017). Antioxidant and antifungal activity of naphthoquinones dimeric derived from lawsone. Journal of Biosciences and Medicines, 5(2), 39-48. https://www.scirp.org/journal/paperinformation.aspx?paperid=74230.
Drewes, F. S.E., Khan, S.F. Vuuren, A.M. Viljoen, Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry, 66 (2005) 1812-1816. https://www.sciencedirect.com/science/article/abs/pii/S0031942205002517.
Dutra, R. C., Campos, M. M., Santos, A. R., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological research, 112, 4-29. https://www.sciencedirect.com/science/article/abs/pii/S1043661816000232.
Ercole, F. F., Melo, L. S. D., & Alcoforado, C. L. G. C. (2014). Revisão integrativa versus revisão sistemática. Revista Mineira de Enfermagem, 18(1), 9-12. http://www.reme.org.br/artigo/detalhes/904.
Ferreira, M. A. D., Do Nascimento, N. R. F., De Sousa, C. M., Pessoa, O. D. L., De Lemos, T. L. G., Ventura, J. S., ... & Chudzinski‐Tavassi, A. M. (2008). Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibα glycoprotein. British journal of pharmacology, 154(6), 1216-1224. https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1038/bjp.2008.199.
Ferreira, M. A. D., Nunes, O. D. R. H., Leal, L. K. A. M., Pessoa, O. D. L., De Lemos, T. L. G., & de Barros Viana, G. S. (2003). Antioxidant Effects in the Quinone Fraction from Auxemma oncocalyx Taub. Biological and Pharmaceutical Bulletin, 26(5), 595-599. https://www.jstage.jst.go.jp/article/bpb/26/5/26_5_595/_article/-char/ja/.
Ferreira, M. A. D., Nunes, O. D., Fontenele, J. B., Pessoa, O. D., Lemos, T. L., & Viana, G. S. (2004). Analgesic and anti-inflammatory activities of a fraction rich in oncocalyxone A isolated from Auxemma oncocalyx. Phytomedicine, 11(4), 315-322. https://www.sciencedirect.com/science/article/abs/pii/S0944711304703347.
Ferreira, M. A., Nunes, O. D., Fujimura, A. H., Pessoa, O. D., Lemos, T. L., & Viana, G. S. (1999). Inhibition of platelet activation by quinones isolated from Auxemma oncocalyx Taub. Research communications in molecular pathology and pharmacology, 106(1-2), 97-107. https://europepmc.org/article/med/11127812.
Furusaki, A., Matsui, M., Watanabé, T., Ōmura, S., Nakagawa, A., & Hata, T. (1972). The Crystal and Molecular Structure of Kinamycin C p‐Bromobenzoate. Israel Journal of Chemistry, 10(2), 173-187. https://onlinelibrary.wiley.com/doi/abs/10.1002/ijch.197200023.
Gottschling, M., & Miller, J. S. (2006). Clarification of the taxonomic position of Auxemma, Patagonula, and Saccellium (Cordiaceae, Boraginales). Systematic Botany, 31(2), 361-367. https://www.ingentaconnect.com/content/aspt/sb/2006/00000031/00000002/art00014.
Jin, S., & Sato, N. (2003). Benzoquinone, the substance essential for antibacterial activity in aqueous extracts from succulent young shoots of the pear Pyrus spp. Phytochemistry, 62(1), 101-107. https://www.sciencedirect.com/science/article/abs/pii/S0031942202004442.
Kurban, S., Deniz, N. G., Sayil, C., Ozyurek, M., Guclu, K., Stasevych, M., ... & Novikov, V. (2019). Synthesis, antimicrobial properties, and inhibition of catalase activity of 1, 4-naphtho-and benzoquinone derivatives containing N-, S-, O-substituted. Heteroatom Chemistry, 2019. https://www.hindawi.com/journals/htrc/2019/1658417/.
Leiva-Revilla, J., De los Reyes Cadenas, J., Vieira, L. A., Campello, C. C., de Holanda Celestino, J. J., Pessoa, O. D. L., ... & Maside, C. (2017). Toxicity effect of Auxemma oncocalyx fraction and its active principle oncocalyxone A on in vitro culture of caprine secondary follicles and in vitro oocyte maturation. Semina: Ciências Agrárias, 38(3), 1361-1373. https://www.redalyc.org/pdf/4457/445751259023.pdf.
Leiva-Revilla, J., Lima, L. F., Castro, S. V., Campello, C. C., Araújo, V. R., de Hollanda Celestino, J. J., ... & Figueiredo, J. R. (2016). Fraction of Auxemma oncocalyx and Oncocalyxone A affects the in vitro survival and development of caprine preantral follicles enclosed in ovarian cortical tissue. Complementary Medicine Research, 23(5), 307-313. https://www.karger.com/Article/Abstract/450719.
Madeo, J., Zubair, A., & Marianne, F. (2013). A review on the role of quinones in renal disorders. Springerplus, 2(1), 1-8. https://link.springer.com/article/10.1186/2193-1801-2-139
Mandell, L. (1956). The mechanism of the Wettstein-Oppenauer oxidation. Journal of the American Chemical Society, 78(13), 3199-3201. https://pubs.acs.org/doi/pdf/10.1021/ja01594a061.
Matos, T. S., Silva, A. K. O., Quintela, A. L., das Chagas Pinto, L. F., Canuto, K. M., Braz-Filho, R., ... & Pessoa, O. D. L. (2017). Neuroinhibitory meroterpenoid compounds from Cordia oncocalyx. Fitoterapia, 123, 65-72. https://www.sciencedirect.com/science/article/abs/pii/S0367326X17311115.
Melo, I. S. V. D., Santos, A. F. D., Lemos, T. L. G. D., Goulart, M. O. F., & Santana, A. E. G. (2015). Oncocalyxone A functions as an anti-glycation agent in vitro. Plos one, 10(6), e0131222. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131222.
Monks, T. J., & Jones, D. C. (2002). The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Current drug metabolism, 3(4), 425-438. https://www.ingentaconnect.com/content/ben/cdm/2002/00000003/00000004/art00005.
Monks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D., & Graham, D. G. (1992). Quinone chemistry and toxicity. Toxicology and applied pharmacology, 112(1), 2-16. https://www.sciencedirect.com/science/article/abs/pii/0041008X9290273U.
Mostert, S., Petzer, A., & Petzer, J. P. (2017). The evaluation of 1, 4-benzoquinones as inhibitors of human monoamine oxidase. European journal of medicinal chemistry, 135, 196-203. https://www.sciencedirect.com/science/article/abs/pii/S0223523417303215.
Naveed, R., Hussain, I., Tawab, A., Tariq, M., Rahman, M., Hameed, S., Mahmood, M.S., Siddique, A. B., Iqbal., M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC Complementary and Alternative Medicine, 13 (1) (2013) 265. https://link.springer.com/article/10.1186/1472-6882-13-265.
Naz, R., Ayub, H., Nawaz, S., Islam, Z. U., Yasmin, T., Bano, A., ... & Roberts, T. H. (2017). Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC complementary and alternative medicine, 17(1), 1-13. https://link.springer.com/article/10.1186/s12906-017-1815-z.
Oliveira, D. R., Krettli, A. U., Aguiar, A. C. C., Leitão, G. G., Vieira, M. N., Martins, K. S., & Leitão, S. G. (2015). Ethnopharmacological evaluation of medicinal plants used against malaria by quilombola communities from Oriximiná, Brazil. Journal of ethnopharmacology, 173, 424-434. https://www.sciencedirect.com/science/article/pii/S0378874115300520.
O’brien, P.J. Molecular Mechanisms of Quinone Cytotoxicity. Chemico-Biological interactions, 80 (1991) 1-41. https://www.sciencedirect.com/science/article/abs/pii/0009279791900297.
Pangal, A., Ahmed, K., & Shaikh, S. (2013). Synthesis, characterization and study of antimicrobial activity of 2, 6-Ditertiary Butyl-1, 4-benzoquinone hydrazones. International Research Journal of Pharmacy, 4(8), 172-176.
Pessoa, C., Lemos, T. L., Pessoa, O. D., Moraes, M. O., Vasconcellos, D., Costa-Lotufo, L. V., & Leyva, A. (2004). Cytotoxicity of derivatives of oncocalyxone A from Auxemma oncocalyx Taub. Arkivoc, 6, 89-94. https://www.researchgate.net/profile/Leticia-Costa-Lotufo/publication/228865358_Cytotoxicity_of_derivatives_of_oncocalyxone_A_from_Auxemma_oncocalyx_Taub/links/0c960534d188f966d3000000/Cytotoxicity-of-derivatives-of-oncocalyxone-A-from-Auxemma-oncocalyx-Taub.pdf.
Pessoa, C., Silveira, E. R., Lemos, T. L. G., Wetmore, L. A., Moraes, M. O., & Leyva, A. (2000). Antiproliferative effects of compounds derived from plants of Northeast Brazil. Phytotherapy Research, 14(3), 187-191. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1099-1573(200005)14:3%3C187::AID-PTR572%3E3.0.CO;2-I.
Pessoa, C., Vieira, F. M. A. C., Lemos, T. G., Moraes, M. O., Lima, P. D. L., Rabenhorst, S. H. B., ... & Burbano, R. R. (2003). Oncocalyxone A from Auxemma oncocalyx lacks genotoxic activity in phytohemagglutinin‐stimulated lymphocytes. Teratogenesis, carcinogenesis, and mutagenesis, 23(S1), 215-220. https://onlinelibrary.wiley.com/doi/abs/10.1002/tcm.10075.
Pessoa, O. D. L., & Lemos, T. L. G. (1997). Allantoin and fatty acid composition in Auxemma oncocalyx. Revista Brasileira de Farmácia, 78, 9-10.
Pessoa, O. D., De Lemos, T. L., De Carvalho, M. G., & Braz-Filho, R. (1995). Cordiachromes from Auxemma oncocalyx. Phytochemistry, 40(6), 1777-1786. https://www.sciencedirect.com/science/article/abs/pii/003194229500397P.
Pessoa, O. D., Lemos, T. L., Silveira, E. R., & Raimundo, B. F. (1993). Novel cordiachromes isolated from Auxemma oncocalyx. Natural Product Letters, 2(2), 145-150. https://www.tandfonline.com/doi/abs/10.1080/10575639308043799.
Prodanov, C. C., & de Freitas, E. C. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico-2ª Edição. Editora Feevale.
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta paulista de enfermagem, 20(2), v-vi. https://www.scielo.br/scielo.php?pid=S0103-21002007000200001&script=sci_arttext&tlng=pt.
Salmon-Chemin, L., Buisine, E., Yardley, V., Kohler, S., Debreu, M. A., Landry, V., ... & Davioud-Charvet, E. (2001). 2-and 3-Substituted 1, 4-Naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: Synthesis and correlation between redox cycling activities and in vitro cytotoxicity. Journal of medicinal chemistry, 44(4), 548-565. https://pubs.acs.org/doi/abs/10.1021/jm001079l.
Sarewicz, M., & Osyczka, A. (2015). Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiological reviews, 95(1), 219-243. https://journals.physiology.org/doi/full/10.1152/physrev.00006.2014.
Schaible, A. M., Filosa, R., Temml, V., Krauth, V., Matteis, M., Peduto, A., ... & Werz, O. (2014). Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1, 4‐benzoquinone that inhibits 5‐lipoxygenase. British journal of pharmacology, 171(9), 2399-2412. https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.12592.
Sivasankar, C., Gayathri, S., Bhaskar, J. P., Krishnan, V., & Pandian, S. K. (2017). Evaluation of selected Indian medicinal plants for antagonistic potential against Malassezia spp. and the synergistic effect of embelin in combination with ketoconazole. Microbial Pathogenesis, 110, 66-72. https://www.sciencedirect.com/science/article/abs/pii/S0882401016304387.
Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African journal of traditional, complementary and alternative medicines, 10(5), 210-229. https://www.ajol.info/index.php/ajtcam/article/view/92333.
Sousa, C. J. P., Prete, A. C. L., Gomes, A. G. P., de Castro, E. F. R., & Ribeiro, C. H. M. A. (2021). Adverse drug events in hospitalized patients in Brazil: Integrative literature review. Research, Society and Development, 10(4), e3410413818-e3410413818. https://rsdjournal.org/index.php/rsd/article/view/13818/12389.
Sousa, E. T., Lopes, W. A., & de Andrade, J. B. (2016). Sources, formation, reactivity and determination of quinones in the atmosphere. Quimica Nova, 39(4), 486-495. https://www.scielo.br/pdf/qn/v39n4/0100-4042-qn-39-04-0486.pdf.
Sreelatha, T., Kandhasamy, S., Dinesh, R., Shruthy, S., Shweta, S., Mukesh, D., ... & Perumal, P. T. (2014). Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorganic & medicinal chemistry letters, 24(15), 3647-3651. https://www.sciencedirect.com/science/article/abs/pii/S0960894X14004375.
Yang, Y., Zhou, X., M. Xu, J. Piao, Y., Zhang, Z., Lin, L. Chen. β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Scientific Reports, 7 (1) (2017). https://www.nature.com/articles/s41598-017-02937-0.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Raí Emanuel da Silva; Fábio de Oliveira Silva Ribeiro ; Gisele Santos de Araújo; Bruno Iles; Otília Deusdênia Loiola Pessoa; Alyne Rodrigues de Araújo; Maria José dos Santos Soares

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.