Efecto de las condiciones de operación y el estudio cinético en la degradación electroquímica del colorante azul de metileno utilizando ánodo Ti/Ru0.3Ti0.7O2

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.14918

Palabras clave:

Electro-oxidación; Azul de metileno; Ánodo Ti/Ru0.3Ti0.7O2; Cinética.

Resumen

Los efluentes textiles y alimentarios tienen en su composición compuestos colorantes nocivos para la salud humana y el medio ambiente y en este contexto han surgido tecnologías avanzadas de oxidación mediante procesos electroquímicos como tratamiento alternativo para los compuestos refractarios presentes en estas aguas residuales. Así, este trabajo investigó la degradación del colorante básico azul de metileno a temperatura ambiente (25 ºC) mediante tratamiento electrocatalítico con ánodo comercial Ti/Ru0.3Ti0.7O2 (30% RuO2 y 70% TiO2). Se realizaron estudios experimentales a pH = 6.8 para evaluar el efecto del potencial de electrólisis, la naturaleza y concentración del soporte electrolítico y la concentración inicial del colorante sobre la eficiencia y la cinética de degradación del azul de metileno. Los resultados mostraron degradaciones mayores al 90% en 60 min de tratamiento por electrólisis indirecta utilizando NaCl 0.01 mol L-1 y Na2SO4 0.01 mol L-1 como soporte electrolítico en el potencial de 5.0 V para concentraciones entre 5 mg L-1 y 25 mg L-1. La cinética de electro-oxidación fue típicamente de primer orden. En general, los valores de eficiencia de degradación encontrados confirmaron el carácter prometedor de la aplicación de ánodos dimensionalmente estables en la descontaminación de aguas residuales coloreadas.

Citas

Alaoui, A., El Kacemi, K., El Ass, K., Kitane, S. & El Bouzidi, S. (2015). Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Separation and Purification Technology, 154, 281–289. https://doi.org/10.1016/j.seppur.2015.09.049.

Alves, P. D. P., Spagnol, M., Tremiliosi-Filho, G. & Andrade, A. R. (2004). Investigation of the influence of the anode composition of DAS-type eletrodes on the electrocatalytic oxidation on phenol in neutron medium. Journal Brazilian Chemical Society, 15, 626–634. https://doi.org/10.1590/S0103-50532004000500003.

Baddouh, A., Bessegato, G. G., Rguiti, M. M., El Ibrahimi, B., Bazzi, L., Hilali, M. & Zanoni, M. V. B. (2018). Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 6(2), 2041–2047. https://doi.org/10.1016/j.jece.2018.03.007.

Brasil. Ministério da Saúde. (2017). Portaria de consolidação n º5, de 28 de Setembro de 2017. https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017.pdf

Callado, N. H., Damianovic, M. H. Z. & Foresti, E. (2017). Influência da razão DQO/[SO4-2] e da concentração de Na+ na remoção de matéria orgânica e sulfato em reator UASB. Engenharia Sanitária Ambiental, 22(2), 381–390, 2017. https://doi.org/10.1590/s1413-41522016140811.

Catanho, M., Malpass, G. R. P. & Motheo, A. D. J. (2006). Evaluation of electrochemical and photoelectrochemical methods for the degradation of three textile dyes. Quimica Nova, 29(5), 983–989. https://doi.org/10.1590/s0100-40422006000500018.

Companhia de Tecnologia Ambiental do Estado de São Paulo – CETESB. (2009). Apêndice D: Significado Ambiental e Sanitário das Variáveis de Qualidade. São Paulo: CETESB.

Collivignarelli, M. C., Abbà, A., Miino, M. C. & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727–745. https://doi.org/10.1016/j.jenvman.2018.11.094.

Comninellis, C. & Chen, G. (2010). Electrochemistry for the Environment. Springer-Verlag.

Cruz-Díaz, M. R., Rivero, E. P., Rodríguez, F. A. & Domínguez-Bautista, R. (2018). Experimental study and mathematical modeling of the electrochemical degradation of dyeing wastewaters in presence of chloride ion with dimensional stable anodes (DSA) of expanded meshes in a FM01-LC reactor. Electrochimica Acta, 260, 726–737. https://doi10.1016/j.electacta.2017.12.025.

Fadillah, G., Saleh, T. A., Wahyuningsih, S., Putri, E. N. K. & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 378, 122140–122150. https://doi.org/10.1016/j.cej.2019.122140.

Fayazi, M. & Ghanei-Motlagh, M. (2020). Electrochemical mineralization of methylene blue dye using electro-Fenton oxidation catalyzed by a novel sepiolite/pyrite nanocomposite. International Journal of Environmental Science and Technology, 17(11), 4541–4548. https://doi: 10.1007/s13762-020-02749-2.

Garcia-Segura, S., Ocon, J. D. & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents - A review. Process Safety and Environmental Protection, 113, 48–67. https://doi.org/10.1016/j.psep.2017.09.014.

Gupta, A. K., Pal, A. & Sahoo, C. (2006). Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using AgC doped TiO2. Dyes and Pigments, 69, 224–232. http://dx.doi.org/10.1016/j.dyepig.2005.04.001.

Indu, M. S., Gupta, A. K. & Sahoo, C. (2014). Electrochemical oxidation of methylene blue using lead acid battery anode. APCBEE Procedia, 9, 70–74. https://doi.org/10.1016/j.apcbee.2014.01.013.

Jawad, N. H. & Najim, S. T. (2018). Removal of methylene blue by direct electrochemical oxidation method using a graphite anode. Materials Science and Engineering, 454, 1–10. https://doi.org/10.1088/1757-899X/454/1/012023.

Kaur, P., Sangal, V. K. & Kushwaha, J. P. (2019). Parametric study of electro-Fenton treatment for real textile wastewater, disposal study and its cost analysis. International Journal of Environmental Science and Technology, 16(2), 801–810. https://doi.org/10.1007/s13762-018-1696-9.

Krstić, V. & Pešovski, B. (2019). Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71–75. https://doi.org/10.1016/j.hydromet.2019.01.018.

Lanza, M. R. V. & Bertazzoli, R. (2002). Selection of a commercial anode oxide coating for electro-oxidation of cyanide. Journal of the Brazilian Chemical Society, 13, 345–351. https://doi.org/10.1590/S0103-50532002000300009.

Lin, J., Luo, Z., Liu, J. & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87(20), 24–31. https://doi.org/10.1016/j.mssp.2018.07.003.

Li, Y., Du, Q., Liu T., Sun J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95, 501–507. http://dx.doi.org/10.1016/j.carbpol.2013.01.094.

Martínez-Huitle, C. A. & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11(1), 62–71. https://doi.org/10.1016/j.coelec.2018.07.010.

Nakamura, K. C., Guimarães, L. S., Magdalena, A. G., Angelo, A. C. D., De Andrade, A. R., Garcia-Segura, S. & Pipi, A. R. F. (2019). Electrochemically-driven mineralization of reactive blue 4 cotton dye: On the role of in situ generated oxidants. Journal of Electroanalytical Chemistry, 840, 415–422. https://doi.org/10.1016/j.jelechem.2019.04.016.

Nidheesh, P. V., Kumar, A., Babu, D. S., Scaria, J. & Kumar, M. S. (2020). Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. Chemosphere, 251, 126437–126447. https://doi.org/10.1016/j.chemosphere.2020.126437.

Oliveira, L. G., Fernandes, F. H., Mesquita, W. D., Junior, M. G., Santos, M. R. C. & Gurgel, M. F. C. (2020). Uma revisão do uso de processos oxidativos avançados para descoloração de águas residuais de efluentes. Revista Processos Químicos, 13(26), 105–112. https://doi.org/10.19142/rpq.v13i26.546.

Orts, F., Bonastre, J., Fernández, F. & Cases, F. (2020). Effect of chloride on the one step electrochemical treatment of an industrial textile wastewater with tin dioxide anodes. The case of trichromy procion HEXL. Chemosphere, 245, 125396–125403. https://doi.org/10.1016/j.chemosphere.2019.125396.

Paula Júnior., D. R. & Foresti, E. (2009). Sulfide toxicity kinetics of a UASB reactor. Brazilian Journal of Chemical Engineering, 26(4), 669–675. https://doi.org/10.1590/S0104-66322009000400005.

Paulino, T. R. S., Araújo, R. S. & Salgado, B. C. B. (2015). Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2). Engenharia Sanitaria e Ambiental, 20(3), 347–352. https://doi.org/10.1590/S1413-41522015020000111627.

Salles, P. T. F., Pelegrine, N. N. B & Pelegrine, R. T. (2006). Tratamento eletroquímico de efluente industrial contendo corantes reativos. Engenharia Ambiental, 3(2), 25–40.

Samarghandi, M. R., Dargahi, A., Shabanloo, A., Nasab, H. Z., Vaziri, Y. & Ansari, A. (2020). Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arabian Journal of Chemistry, 13(8), 6847–6864. https://doi.org/10.1016/j.arabjc.2020.06.038.

Santos, D. H. S., Duarte, J. L. S., Tavares, M. G. R., Tavares, M. G., Friedrich, L. C., Meili, L., Pimentel, W. R. O, Tonholo, J. & Zanta, C. L. P. S. (2020). Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing - Process Intensification, 153, 107940–107951. https://doi.org/10.1016/j.cep.2020.107940.

Singh, S., Lo, S. L., Srivastava, V. C. & Hiwarkar, A. D. (2016). Comparative study of electrochemical oxidation for dye degradation: Parametric optimization and mechanism identification. Journal of Environmental Chemical Engineering, 4(3), 2911–2921. https://doi.org/10.1016/j.jece.2016.05.036.

Tang, Y., He, D., Guo, Y., Qu, W., Shang, J., Zhou, L., Pan, R. & Dong, W. (2020). Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. Chemosphere, 258, 127368–127377. https://doi.org/10.1016/j.chemosphere.2020.127368.

Yaseen, D. A. & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16, 1193–1226. https://doi.org/10.1007/s13762-018-2130-z.

Publicado

07/05/2021

Cómo citar

SOUZA, T. de O. .; RIBEIRO, J. A. S.; VIANA, F. E. P.; LIMA, J. R. de; CRUZ, J. de V.; ALMEIDA, E. da S.; ARAÚJO, R. dos S. Efecto de las condiciones de operación y el estudio cinético en la degradación electroquímica del colorante azul de metileno utilizando ánodo Ti/Ru0.3Ti0.7O2. Research, Society and Development, [S. l.], v. 10, n. 5, p. e35510514918, 2021. DOI: 10.33448/rsd-v10i5.14918. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14918. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Exactas y de la Tierra