La detección precoz de SARS-CoV-2 en las aguas residuales y su uso en el control epidemiológico de COVID-19
DOI:
https://doi.org/10.33448/rsd-v10i5.15219Palabras clave:
Epidemiología; EBAR; Salud pública; Monitoreo epidemiológico; Medicina Preventiva; Vigilancia epidemiológica.Resumen
El SARS-CoV-2 es un nuevo tipo de coronavirus capaz de infectar a los humanos y causar el síndrome respiratorio agudo severo COVID-19, una enfermedad que ha estado causando grandes impactos en todo el mundo. A menudo se ha observado que los pacientes con COVID-19, incluidos los casos leves, presintomáticos y asintomáticos, contienen fragmentos infecciosos de SARS-CoV-2 en muestras de heces y orina. Así, los estudios para detectar el nuevo coronavirus en las aguas residuales, que recolectan y concentran excrementos humanos, han sido de gran utilidad como herramienta para monitorear la diseminación del virus en las comunidades. La vigilancia, que a menudo se utiliza para desarrollar diagnósticos económicos y no invasivos sobre la circulación de sustancias químicas y contaminantes en las poblaciones, podría usarse como una alerta rápida sobre epidemias emergentes y reemergentes de COVID-19, mejorando las predicciones sobre la propagación del SARS-CoV-2 y promover el desarrollo de mejores medidas de contención viral. Además, el enfoque podría usarse para construir modelos epidemiológicos con mayor precisión, fomentar las mejores prácticas para la coordinación de recursos y la administración de vacunas, evaluar la propagación de las variantes del SARS-CoV-2 en escalas temporales y geográficas, evaluar los riesgos ambientales y también la efectividad de sistemas de desinfección. En esta revisión, discutimos los informes de detección precoz de SARS-CoV-2 en aguas residuales y la importancia de este valioso enfoque en la aplicación de intervenciones más rápidas y efectivas por parte de las autoridades de salud pública, ya sea en relación con COVID-19 o cualquier otro enfermedad epidémica en el futuro.
Citas
Adineh, M., Ghaderi, M., & Mousavi-Nasab, S. D. (2019). Occurrence of salivirus in sewage and river water samples in karaj, iran. Food and Environmental Virology, 11(2), 193–197. https://doi.org/10.1007/s12560-019-09377-1
Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V., & Mueller, J. F. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of The Total Environment, 728, 138764. https://doi.org/10.1016/j.scitotenv.2020.138764
Ahmed, W., Tscharke, B., Bertsch, P. M., Bibby, K., Bivins, A., Choi, P., Clarke, L., Dwyer, J., Edson, J., Nguyen, T. M. H., O’Brien, J. W., Simpson, S. L., Sherman, P., Thomas, K. V., Verhagen, R., Zaugg, J., & Mueller, J. F. (2021). SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Science of The Total Environment, 761, 144216. https://doi.org/10.1016/j.scitotenv.2020.144216
Ali, H. A., Yaniv, K., Bar-Zeev, E., Chaudhury, S., Shaga, M., Lakkakula, S., Ronen, Z., Kushmaro, A., & Nir, O. (2020). Tracking SARS-CoV-2 RNA through the wastewater treatment process. MedRxiv, 2020.10.14.20212837. https://doi.org/10.1101/2020.10.14.20212837
Amanat, F., & Krammer, F. (2020). Sars-cov-2 vaccines: Status report. Immunity, 52(4), 583–589. https://doi.org/10.1016/j.immuni.2020.03.007
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
Bhalla, N., Pan, Y., Yang, Z., & Payam, A. F. (2020). Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: Covid-19. ACS Nano, 14(7), 7783–7807. https://doi.org/10.1021/acsnano.0c04421
Bisseux, M., Colombet, J., Mirand, A., Roque-Afonso, A.-M., Abravanel, F., Izopet, J., Archimbaud, C., Peigue-Lafeuille, H., Debroas, D., Bailly, J.-L., & Henquell, C. (2018). Monitoring human enteric viruses in wastewater and relevance to infections encountered in the clinical setting: A one-year experiment in central France, 2014 to 2015. Eurosurveillance, 23(7), 17. https://doi.org/10.2807/1560-7917.ES.2018.23.7.17-00237
Bivins, A., North, D., Ahmad, A., Ahmed, W., Alm, E., Been, F., Bhattacharya, P., Bijlsma, L., Boehm, A. B., Brown, J., Buttiglieri, G., Calabro, V., Carducci, A., Castiglioni, S., Cetecioglu Gurol, Z., Chakraborty, S., Costa, F., Curcio, S., de los Reyes, F. L., … Bibby, K. (2020). Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against covid-19. Environmental Science & Technology, 54(13), 7754–7757. https://doi.org/10.1021/acs.est.0c02388
Bogler, A., Packman, A., Furman, A., Gross, A., Kushmaro, A., Ronen, A., Dagot, C., Hill, C., Vaizel-Ohayon, D., Morgenroth, E., Bertuzzo, E., Wells, G., Kiperwas, H. R., Horn, H., Negev, I., Zucker, I., Bar-Or, I., Moran-Gilad, J., Balcazar, J. L., … Bar-Zeev, E. (2020). Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 3(12), 981–990. https://doi.org/10.1038/s41893-020-00605-2
Borsa, M., & Mazet, J. M. (2020). Attacking the defence: SARS-CoV-2 can infect immune cells. Nature Reviews Immunology, 20(10), 592–592. https://doi.org/10.1038/s41577-020-00439-1
Cahill, N., & Morris, D. (2020). Recreational waters – A potential transmission route for SARS-CoV-2 to humans? Science of The Total Environment, 740, 140122. https://doi.org/10.1016/j.scitotenv.2020.140122
Carducci, A., Federigi, I., Liu, D., Thompson, J. R., & Verani, M. (2020). Making Waves: Coronavirus detection, presence and persistence in the water environment: State of the art and knowledge needs for public health. Water Research, 179, 115907. https://doi.org/10.1016/j.watres.2020.115907
Chavarria-Miró, G., Anfruns-Estrada, E., Guix, S., Paraira, M., Galofré, B., Sánchez, G., Pintó, R. M., & Bosch, A. (2020). Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. MedRxiv, 2020.06.13.20129627. https://doi.org/10.1101/2020.06.13.20129627
Chen, L., Deng, C., Chen, X., Zhang, X., Chen, B., Yu, H., Qin, Y., Xiao, K., Zhang, H., & Sun, X. (2020). Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: A cross-sectional study. Acta Ophthalmologica, 98(8), e951–e959. https://doi.org/https://doi.org/10.1111/aos.14472
Choi, P. M., Tscharke, B. J., Donner, E., O’Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O’Malley, E., Crosbie, N. D., Thomas, K. V., & Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. TrAC Trends in Analytical Chemistry, 105, 453–469. https://doi.org/10.1016/j.trac.2018.06.004
Chu, D. K., Akl, E. A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H. J., Chu, D. K., Akl, E. A., El-harakeh, A., Bognanni, A., Lotfi, T., Loeb, M., Hajizadeh, A., Bak, A., Izcovich, A., Cuello-Garcia, C. A., Chen, C., Harris, D. J., Borowiack, E., … Schünemann, H. J. (2020). Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. The Lancet, 395(10242), 1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9
Cipollaro, L., Giordano, L., Padulo, J., Oliva, F., & Maffulli, N. (2020). Musculoskeletal symptoms in SARS-CoV-2 (COVID-19) patients. Journal of Orthopaedic Surgery and Research, 15(1), 178, s13018-020-01702-w. https://doi.org/10.1186/s13018-020-01702-w
Corpuz, M. V. A., Buonerba, A., Vigliotta, G., Zarra, T., Ballesteros, F., Campiglia, P., Belgiorno, V., Korshin, G., & Naddeo, V. (2020). Viruses in wastewater: Occurrence, abundance and detection methods. Science of The Total Environment, 745, 140910. https://doi.org/10.1016/j.scitotenv.2020.140910
Crits-Christoph, A., Kantor, R. S., Olm, M. R., Whitney, O. N., Al-Shayeb, B., Lou, Y. C., Flamholz, A., Kennedy, L. C., Greenwald, H., Hinkle, A., Hetzel, J., Spitzer, S., Koble, J., Tan, A., Hyde, F., Schroth, G., Kuersten, S., Banfield, J. F., & Nelson, K. L. (2021). Genome sequencing of sewage detects regionally prevalent sars-cov-2 variants. MBio, 12(1), e02703-20, /mbio/12/1/mBio.02703-20.atom. https://doi.org/10.1128/mBio.02703-20
Curtis, K., Keeling, D., Yetka, K., Larson, A., & Gonzalez, R. (2020). Wastewater SARS-CoV-2 concentration and loading variability from grab and 24-hour composite samples. In bioRxiv. https://doi.org/10.1101/2020.07.10.20150607
D’Aoust, P. M., Graber, T. E., Mercier, E., Montpetit, D., Alexandrov, I., Neault, N., Baig, A. T., Mayne, J., Zhang, X., Alain, T., Servos, M. R., Srikanthan, N., MacKenzie, M., Figeys, D., Manuel, D., Jüni, P., MacKenzie, A. E., & Delatolla, R. (2021). Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Science of The Total Environment, 770, 145319. https://doi.org/10.1016/j.scitotenv.2021.145319
Daughton, C. G. (2018). Monitoring wastewater for assessing community health: Sewage Chemical-Information Mining (SCIM). Science of The Total Environment, 619–620, 748–764. https://doi.org/10.1016/j.scitotenv.2017.11.102
Daughton, C. G. (2020). Wastewater surveillance for population-wide Covid-19: The present and future. Science of The Total Environment, 736, 139631. https://doi.org/10.1016/j.scitotenv.2020.139631
Diao, B., Wang, C., Wang, R., Feng, Z., Tan, Y., Wang, H., Wang, C., Liu, L., Liu, Y., Liu, Y., Wang, G., Yuan, Z., Ren, L., Wu, Y., & Chen, Y. (2020). Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.03.04.20031120
Ding, Z., Qian, H., Xu, B., Huang, Y., Miao, T., Yen, H.-L., Xiao, S., Cui, L., Wu, X., Shao, W., Song, Y., Sha, L., Zhou, L., Xu, Y., Zhu, B., & Li, Y. (2021). Toilets dominate environmental detection of severe acute respiratory syndrome coronavirus 2 in a hospital. Science of The Total Environment, 753, 141710. https://doi.org/10.1016/j.scitotenv.2020.141710
Dolfing, J. (2020). The Importance of Sewage Archiving in Coronavirus Epidemiology and Beyond. Environmental Science & Technology, 54(13), 7740–7741. https://doi.org/10.1021/acs.est.0c02972
Eliezer, M., Hautefort, C., Hamel, A.-L., Verillaud, B., Herman, P., Houdart, E., & Eloit, C. (2020). Sudden and complete olfactory loss of function as a possible symptom of covid-19. JAMA Otolaryngology–Head & Neck Surgery, 146(7), 674. https://doi.org/10.1001/jamaoto.2020.0832
Elsamadony, M., Fujii, M., Miura, T., & Watanabe, T. (2021). Possible transmission of viruses from contaminated human feces and sewage: Implications for SARS-CoV-2. Science of The Total Environment, 755, 142575. https://doi.org/10.1016/j.scitotenv.2020.142575
Farkas, K., Mannion, F., Hillary, L. S., Malham, S. K., & Walker, D. I. (2020). Emerging technologies for the rapid detection of enteric viruses in the aquatic environment. Current Opinion in Environmental Science & Health, 16, 1–6. https://doi.org/10.1016/j.coesh.2020.01.007
Feng, W., Newbigging, A. M., Le, C., Pang, B., Peng, H., Cao, Y., Wu, J., Abbas, G., Song, J., Wang, D.-B., Cui, M., Tao, J., Tyrrell, D. L., Zhang, X.-E., Zhang, H., & Le, X. C. (2020). Molecular Diagnosis of COVID-19: Challenges and Research Needs. Analytical Chemistry, 92(15), 10196–10209. https://doi.org/10.1021/acs.analchem.0c02060
Fernández‐de‐Mera, I. G., Rodríguez del‐Río, F. J., Fuente, J., Pérez‐Sancho, M., Hervás, D., Moreno, I., Domínguez, M., Domínguez, L., & Gortázar, C. (2020). Detection of environmental SARS‐CoV‐2 RNA in a high prevalence setting in Spain. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.13817
Foladori, P., Cutrupi, F., Segata, N., Manara, S., Pinto, F., Malpei, F., Bruni, L., & La Rosa, G. (2020). SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Science of The Total Environment, 743, 140444. https://doi.org/10.1016/j.scitotenv.2020.140444
Fongaro, G., Stoco, P. H., Souza, D. S. M., Grisard, E. C., Magri, M. E., Rogovski, P., Schörner, M. A., Barazzetti, F. H., Christoff, A. P., de Oliveira, L. F. V., Bazzo, M. L., Wagner, G., Hernández, M., & Rodríguez-Lázaro, D. (2021). The presence of SARS-CoV-2 RNA in human sewage in Santa Catarina, Brazil, November 2019. Science of The Total Environment, 778, 146198. https://doi.org/10.1016/j.scitotenv.2021.146198
Furukawa, N. W., Brooks, J. T., & Sobel, J. (2020). Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 While Presymptomatic or Asymptomatic. Emerging Infectious Diseases, 26(7). https://doi.org/10.3201/eid2607.201595
Giri, B., Pandey, S., Shrestha, R., Pokharel, K., Ligler, F. S., & Neupane, B. B. (2020). Review of analytical performance of COVID-19 detection methods. Analytical and Bioanalytical Chemistry, 413(1), 35–48. https://doi.org/10.1007/s00216-020-02889-x
Grunig, G., Durmus, N., & Marsh, L. (2020). New Coronavirus (COVID-19) pandemic: Complexities resulting in a tragedy. In Preprints. https://doi.org/10.20944/preprints202004.0407.v2
Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X., & Lu, Z. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019(COVID-19). JAMA Cardiology, 5(7), 811. https://doi.org/10.1001/jamacardio.2020.1017
Gyawali, P., & Hewitt, J. (2018). Detection of Infectious Noroviruses from Wastewater and Seawater Using PEMAXTM Treatment Combined with RT-qPCR. Water, 10(7), 841. https://doi.org/10.3390/w10070841
Hamouda, M., Mustafa, F., Maraqa, M., Rizvi, T., & Aly Hassan, A. (2021). Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Science of The Total Environment, 759, 143493. https://doi.org/10.1016/j.scitotenv.2020.143493
Hua, J., & Shaw, R. (2020). Corona Virus (COVID-19) “Infodemic” and Emerging Issues through a Data Lens: The Case of China. International Journal of Environmental Research and Public Health, 17(7), 2309. https://doi.org/10.3390/ijerph17072309
Huang, W. E., Lim, B., Hsu, C.-C., Xiong, D., Wu, W., Yu, Y., Jia, H., Wang, Y., Zeng, Y., Ji, M., Chang, H., Zhang, X., Wang, H., & Cui, Z. (2020). RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microbial Biotechnology, 13(4), 950–961. https://doi.org/https://doi.org/10.1111/1751-7915.13586
Hui, Q., Pan, Y., & Yang, Z. (2020). Paper-based devices for rapid diagnostics and testing sewage for early warning of COVID-19 outbreak. Case Studies in Chemical and Environmental Engineering, 2, 100064. https://doi.org/10.1016/j.cscee.2020.100064
I. Ahmed, N., M. Elmahdy, E., K. Allayh, A., B. Mohamed, E.-C., A. Loutfy, S., Barakat, A., & A. Ali, M. (2019). Prevalence of human polyomavirus and papillomavirus in wastewater and in stool of Egyptian patients. Egyptian Journal of Aquatic Biology and Fisheries, 23(2), 29–41. https://doi.org/10.21608/ejabf.2019.29237
Izquierdo-Lara, R., Elsinga, G., Heijnen, L., Oude Munnink, B. B., Schapendonk, C. M. E., Nieuwenhuijse, D., Kon, M., Lu, L., Aarestrup, F. M., Lycett, S., Medema, G., Koopmans, M. P. G., & de Graaf, M. (2020). Monitoring SARS-CoV-2 circulation and diversity through community wastewater sequencing. In bioRxiv. https://doi.org/10.1101/2020.09.21.20198838
Jahn, K., Dreifuss, D., Topolsky, I., Kull, A., Ganesanandamoorthy, P., Fernandez-Cassi, X., Bänziger, C., Stachler, E., Fuhrmann, L., Jablonski, K. P., Chen, C., Aquino, C., Stadler, T., Ort, C., Kohn, T., Julian, T. R., & Beerenwinkel, N. (2021). Detection of SARS-CoV-2 variants in Switzerland by genomic analysis of wastewater samples. In bioRxiv. https://doi.org/10.1101/2021.01.08.21249379
Jeong, H. W., Kim, S.-M., Kim, H.-S., Kim, Y.-I., Kim, J. H., Cho, J. Y., Kim, S.-H., Kang, H., Kim, S.-G., Park, S.-J., Kim, E.-H., & Choi, Y. K. (2020). Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 26(11), 1520–1524. https://doi.org/10.1016/j.cmi.2020.07.020.
Jha, A. K., Semwal, N., & Gargava, P. (2020). Issues and opportunities associated with SARS CoV-2 (COVID-19) virus detection in sewage. Journal of Indian Association for Environmental Management (JIAEM), 40(2), 49–51
Jiang, X., Luo, M., Zou, Z., Wang, X., Chen, C., & Qiu, J. (2020). Asymptomatic SARS-CoV-2 infected case with viral detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. Journal of Medical Virology, 92(10), 1807–1809. https://doi.org/https://doi.org/10.1002/jmv.25941
Jin, X., Lian, J.-S., Hu, J.-H., Gao, J., Zheng, L., Zhang, Y.-M., Hao, S.-R., Jia, H.-Y., Cai, H., Zhang, X.-L., Yu, G.-D., Xu, K.-J., Wang, X.-Y., Gu, J.-Q., Zhang, S.-Y., Ye, C.-Y., Jin, C.-L., Lu, Y.-F., Yu, X., … Yang, Y. (2020). Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut, 69(6), 1002–1009. https://doi.org/10.1136/gutjnl-2020-320926
Jørgensen, A. C. U., Gamst, J., Hansen, L. V., Knudsen, I. I. H., & Jensen, S. K. S. (2020). Eurofins Covid-19 SentinelTM Wastewater Test Provide Early Warning of a potential COVID-19 outbreak. In bioRxiv. https://doi.org/10.1101/2020.07.10.20150573
Kang, M., Wei, J., Yuan, J., Guo, J., Zhang, Y., Hang, J., Qu, Y., Qian, H., Zhuang, Y., Chen, X., Peng, X., Shi, T., Wang, J., Wu, J., Song, T., He, J., Li, Y., & Zhong, N. (2020). Probable evidence of fecal aerosol transmission of SARS-CoV-2 in a high-rise building. Annals of Internal Medicine, 173(12), 974–980. https://doi.org/10.7326/M20-0928
Kaplan, E. H., Wang, D., Wang, M., Malik, A. A., Zulli, A., & Peccia, J. (2020). Aligning SARS-CoV-2 indicators via an epidemic model: application to hospital admissions and RNA detection in sewage sludge. Health Care Management Science. https://doi.org/10.1007/s10729-020-09525-1
Karthikeyan, S., Ronquillo, N., Belda-Ferre, P., Alvarado, D., Javidi, T., Longhurst, C. A., & Knight, R. (2021). High-throughput wastewater SARS-CoV-2 detection enables forecasting of community infection dynamics in San Diego County. MSystems, 6(2). https://doi.org/10.1128/mSystems.00045-21
Kashi, A. H., De la Rosette, J., Amini, E., Abdi, H., Fallah-Karkan, M., & Vaezjalali, M. (2020). Urinary viral shedding of COVID-19 and its clinical associations: A systematic review and meta-analysis of observational studies. Urology Journal, 17(5), 433–441. https://doi.org/10.22037/uj.v16i7.6248
Khan, S., Chen, L., Yang, C.-R., Raghuram, V., Khundmiri, S. J., & Knepper, M. A. (2020). Does SARS-CoV-2 infect the kidney? Journal of the American Society of Nephrology: JASN, 31(12), 2746–2748. https://doi.org/10.1681/ASN.2020081229
Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C. P., Hamilton, K. A., Haramoto, E., & Rose, J. B. (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. The Science of the Total Environment, 739(139076), 139076. https://doi.org/10.1016/j.scitotenv.2020.139076
Kumar, M., Joshi, M., Patel, A. K., & Joshi, C. G. (2021). Unravelling the early warning capability of wastewater surveillance for COVID-19: A temporal study on SARS-CoV-2 RNA detection and need for the escalation. Environmental Research, 196(110946), 110946. https://doi.org/10.1016/j.envres.2021.110946
La Rosa, G., Iaconelli, M., Mancini, P., Bonanno Ferraro, G., Veneri, C., Bonadonna, L., Lucentini, L., & Suffredini, E. (2020). First detection of SARS-CoV-2 in untreated wastewaters in Italy. The Science of the Total Environment, 736(139652), 139652. https://doi.org/10.1016/j.scitotenv.2020.139652
La Rosa, G., Mancini, P., Bonanno Ferraro, G., Veneri, C., Iaconelli, M., Bonadonna, L., Lucentini, L., & Suffredini, E. (2021). SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. The Science of the Total Environment, 750(141711), 141711. https://doi.org/10.1016/j.scitotenv.2020.141711
Larsen, D. A., & Wigginton, K. R. (2020). Tracking COVID-19 with wastewater. Nature Biotechnology, 38(10), 1151–1153. https://doi.org/10.1038/s41587-020-0690-1
Lee, S., Kim, T., Lee, E., Lee, C., Kim, H., Rhee, H., Park, S. Y., Son, H.-J., Yu, S., Park, J. W., Choo, E. J., Park, S., Loeb, M., & Kim, T. H. (2020). Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Internal Medicine, 180(11), 1447. https://doi.org/10.1001/jamainternmed.2020.3862
Lesimple, A., Jasim, S. Y., Johnson, D. J., & Hilal, N. (2020). The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. Journal of Water Process Engineering, 38(101544), 101544. https://doi.org/10.1016/j.jwpe.2020.101544
Li, W., Su, Y.-Y., Zhi, S.-S., Huang, J., Zhuang, C.-L., Bai, W.-Z., Wan, Y., Meng, X.-R., Zhang, L., Zhou, Y.-B., Luo, Y.-Y., Ge, S.-X., Chen, Y.-K., & Ma, Y. (2020). Virus shedding dynamics in asymptomatic and mildly symptomatic patients infected with SARS-CoV-2. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 26(11), 1556.e1-1556.e6. https://doi.org/10.1016/j.cmi.2020.07.008
Lu, D., Zhu, D. Z., Gan, H., Yao, Z., Fu, Q., & Zhang, X. (2021). Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology. The Science of the Total Environment, 777(146239), 146239. https://doi.org/10.1016/j.scitotenv.2021.146239
Pecson, B. M., Darby, E., Haas, C. N., Amha, Y. M., Bartolo, M., Danielson, R., Dearborn, Y., Di Giovanni, G., Ferguson, C., Fevig, S., Gaddis, E., Gray, D., Lukasik, G., Mull, B., Olivas, L., Olivieri, A., Qu, Y., & SARS-CoV-2 Interlaboratory Consortium. (2021). Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the U.S. Environmental Science: Water Research & Technology, 7(3), 504–520. https://doi.org/10.1039/D0EW00946F
Mainardi, P. H., & Bidoia, E. D. (2021). A importância do monitoramento do SARS-CoV-2 em redes de esgoto e estações de tratamento de águas residuárias / The importance of monitoring the SARS-CoV-2 in sewage networks and wastewater treatment plants. Brazilian Journal of Health Review, 4(2), 5051–5066. https://doi.org/10.34119/bjhrv4n2-083
Mao, K., Zhang, H., & Yang, Z. (2020b). An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosensors & Bioelectronics, 169(112617), 112617. https://doi.org/10.1016/j.bios.2020.112617
Mao, K., Zhang, K., Du, W., Ali, W., Feng, X., & Zhang, H. (2020a). The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health, 17, 1–7. https://doi.org/10.1016/j.coesh.2020.04.006
Martin, J., Klapsa, D., Wilton, T., Zambon, M., Bentley, E., Bujaki, E., Fritzsche, M., Mate, R., & Majumdar, M. (2020). Tracking SARS-CoV-2 in sewage: Evidence of changes in virus variant predominance during COVID-19 pandemic. Viruses, 12(10), 1144. https://doi.org/10.3390/v12101144
Medema, G., Been, F., Heijnen, L., & Petterson, S. (2020b). Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Current Opinion in Environmental Science & Health, 17, 49–71. https://doi.org/10.1016/j.coesh.2020.09.006
Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020a). Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science & Technology Letters, 7(7), 511–516. https://doi.org/10.1021/acs.estlett.0c00357
Melvin, R. G., Chaudhry, N., Georgewill, O., Freese, R., & Simmons, G. E. (2021). Predictive power of SARS-CoV-2 wastewater surveillance for diverse populations across a large geographical range. MedRxiv. https://doi.org/10.1101/2021.01.23.21250376
Messina, S. (2020). Monitoring Human Waste. Voices in Bioethics, Vol 6 (2020). https://doi.org/10.7916/VIB.V6I.6406
Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2020). Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. Journal of Environmental Chemical Engineering, 8(5), 104306. https://doi.org/10.1016/j.jece.2020.104306
Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139(105730), 105730.
https://doi.org/10.1016/j.envint.2020.105730
Mouchtouri, V. A., Koureas, M., Kyritsi, M., Vontas, A., Kourentis, L., Sapounas, S., Rigakos, G., Petinaki, E., Tsiodras, S., & Hadjichristodoulou, C. (2020). Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. International Journal of Hygiene and Environmental Health, 230(113599), 113599. https://doi.org/10.1016/j.ijheh.2020.113599
Nabi, G., Siddique, R., & Khan, S. (2020). Detecting viral outbreaks in future using enhanced environmental surveillance. Environmental Research, 188(109731), 109731. https://doi.org/10.1016/j.envres.2020.109731
Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Reports Medicine, 100098, 100098. https://doi.org/10.1016/j.xcrm.2020.100098
O’Brien, E., Nakyazze, J., Wu, H., Kiwanuka, N., Cunningham, W., Kaneene, J. B., & Xagoraraki, I. (2017). Viral diversity and abundance in polluted waters in Kampala, Uganda. Water Research, 127, 41–49. https://doi.org/10.1016/j.watres.2017.09.063
Orive, G., Lertxundi, U., & Barcelo, D. (2020). Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. The Science of the Total Environment, 732(139298), 139298. https://doi.org/10.1016/j.scitotenv.2020.139298
Park, S.-K., Lee, C.-W., Park, D.-I., Woo, H.-Y., Cheong, H. S., Shin, H. C., Ahn, K., Kwon, M.-J., & Joo, E.-J. (2020). Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association. https://doi.org/10.1016/j.cgh.2020.06.005
Patel, J. (2020). Viability of SARS-CoV-2 in faecal bio-aerosols. Colorectal Disease, 22(9), 1022–1022. https://doi.org/10.1111/codi.15181
Patel, K. P., Vunnam, S. R., Patel, P. A., Krill, K. L., Korbitz, P. M., Gallagher, J. P., Suh, J. E., & Vunnam, R. R. (2020). Transmission of SARS-CoV-2: an update of current literature. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 39(11), 2005–2011. https://doi.org/10.1007/s10096-020-03961-1
Patel, M., Chaubey, A. K., Pittman, C. U., Jr, Mlsna, T., & Mohan, D. (2021). Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. The Science of the Total Environment, 765(142698), 142698. https://doi.org/10.1016/j.scitotenv.2020.142698
Peccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., Warren, J. L., Weinberger, D. M., Arnold, W., & Omer, S. B. (2020). Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 38(10), 1164–1167. https://doi.org/10.1038/s41587-020-0684-z
Pérez-Cataluña, A., Chiner-Oms, Á., Cuevas-Ferrando, E., Díaz-Reolid, A., Falcó, I., Randazzo, W., Girón-Guzmán, I., Allende, A., Bracho, M. A., Comas, I., & Sánchez, G. (2021). Detection of genomic variants of SARS-CoV-2 circulating in wastewater by high-throughput sequencing. In bioRxiv. https://doi.org/10.1101/2021.02.08.21251355
Pezzini, A., & Padovani, A. (2020). Lifting the mask on neurological manifestations of COVID-19. Nature Reviews. Neurology, 16(11), 636–644. https://doi.org/10.1038/s41582-020-0398-3
Polo, D., Quintela-Baluja, M., Corbishley, A., Jones, D. L., Singer, A. C., Graham, D. W., & Romalde, J. L. (2020). Making waves: Wastewater-based epidemiology for COVID-19 – approaches and challenges for surveillance and prediction. Water Research, 186(116404), 116404. https://doi.org/10.1016/j.watres.2020.116404
Qian, Q., Fan, L., Liu, W., Li, J., Yue, J., Wang, M., Ke, X., Yin, Y., Chen, Q., & Jiang, C. (2020). Direct evidence of active SARS-CoV-2 replication in the intestine. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. https://doi.org/10.1093/cid/ciaa925
Quilliam, R. S., Weidmann, M., Moresco, V., Purshouse, H., O’Hara, Z., & Oliver, D. M. (2020). COVID-19: The environmental implications of shedding SARS-CoV-2 in human faeces. Environment International, 140, 105790. https://doi.org/10.1016/j.envint.2020.105790
Randazzo, W., Piqueras, J., Evtoski, Z., Sastre, G., Sancho, R., Gonzalez, C., & Sánchez, G. (2019). Interlaboratory comparative study to detect potentially infectious human Enteric viruses in influent and effluent waters. Food and Environmental Virology, 11(4), 350–363. https://doi.org/10.1007/s12560-019-09392-2
Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181(115942), 115942. https://doi.org/10.1016/j.watres.2020.115942
Saguti, F., Magnil, E., Enache, L., Churqui, M. P., Johansson, A., Lumley, D., Davidsson, F., Dotevall, L., Mattsson, A., Trybala, E., Lagging, M., Lindh, M., Gisslén, M., Brezicka, T., Nyström, K., & Norder, H. (2021). Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19. Water Research, 189(116620), 116620. https://doi.org/10.1016/j.watres.2020.116620
Sah, R., Pokhrel, N., Fathah, Z., Ozaki, A., Bhandari, D., Kotera, Y., Shah, N. P., Sigdel, S., Vora, K. S., Natesan, S. K., Patel, S. K., Tiwari, R., Malik, Y. S., Yatoo, M. I., Rodriguez-Morales, A. J., & Dhama, K. (2020). SARS-CoV-2 / COVID-19: Salient facts and strategies to combat ongoing pandemic. Journal of Pure & Applied Microbiology, 14(3), 1663–1674. https://doi.org/10.22207/JPAM.14.3.04
Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M., Palmisani, J., Di Gilio, A., Piscitelli, P., & Miani, A. (2020). Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough. International Journal of Environmental Research and Public Health, 17(8), 2932. https://doi.org/10.3390/ijerph17082932
Sims, N., & Kasprzyk-Hordern, B. (2020). Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environment International, 139(105689), 105689. https://doi.org/10.1016/j.envint.2020.105689
Stadler, L. B., Ensor, K. B., Clark, J. R., Kalvapalle, P., LaTurner, Z. W., Mojica, L., Terwilliger, A., Zhuo, Y., Ali, P., Avadhanula, V., Bertolusso, R., Crosby, T., Hernandez, H., Hollstein, M., Weesner, K., Zong, D. M., Persse, D., Piedra, P. A., Maresso, A. W., & Hopkins, L. (2020). Wastewater analysis of SARS-CoV-2 as a predictive metric of positivity rate for a major metropolis. In bioRxiv. https://doi.org/10.1101/2020.11.04.20226191
Sun, P., Qie, S., Liu, Z., Ren, J., Li, K., & Xi, J. (2020). Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. Journal of Medical Virology, 92(6), 612–617. https://doi.org/10.1002/jmv.25735
Thompson, J. R., Nancharaiah, Y. V., Gu, X., Lee, W. L., Rajal, V. B., Haines, M. B., Girones, R., Ng, L. C., Alm, E. J., & Wuertz, S. (2020). Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research, 184(116181), 116181. https://doi.org/10.1016/j.watres.2020.116181
Tymm, C., Zhou, J., Tadimety, A., Burklund, A., & Zhang, J. X. J. (2020). Scalable COVID-19 detection enabled by lab-on-chip biosensors. Cellular and Molecular Bioengineering, 13(4), 1–17. https://doi.org/10.1007/s12195-020-00642-z
Vallejo, J. A., Rumbo-Feal, S., Conde-Pérez, K., López-Oriona, Á., Tarrío, J., Reif, R., Ladra, S., Rodiño-Janeiro, B. K., Nasser, M., Cid, Á., Veiga, M. C., Acevedo, A., Lamora, C., Bou, G., Cao, R., & Poza, M. (2020). Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load. In bioRxiv. https://doi.org/10.1101/2020.07.02.20144865
Wei, W. E., Li, Z., Chiew, C. J., Yong, S. E., Toh, M. P., & Lee, V. J. (2020). Presymptomatic transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020. MMWR. Morbidity and Mortality Weekly Report, 69(14), 411–415. https://doi.org/10.15585/mmwr.mm6914e1
Weidhaas, J., Aanderud, Z. T., Roper, D. K., VanDerslice, J., Gaddis, E. B., Ostermiller, J., Hoffman, K., Jamal, R., Heck, P., Zhang, Y., Torgersen, K., Laan, J. V., & LaCross, N. (2021). Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. The Science of the Total Environment, 775(145790), 145790. https://doi.org/10.1016/j.scitotenv.2021.145790
World Health Organization (2020c). Water, sanitation, hygiene, and waste management for SARS-CoV-2, the virus that causes COVID-19: interim guidance, 29 July 2020. World Health Organization
World Health Organization (2020b). WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization. https://covid19.who.int/
World Health Organization (2020a). WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020. World Health Organization
Wurtzer, S., Waldman, P., Levert, M., Mouchel, J. M., Gorgé, O., Boni, M., Maday, Y., Marechal, V., Moulin, L., & OBEPINE consortium. (2021). Monitoring the propagation of SARS CoV2 variants by tracking identified mutation in wastewater using specific RT-qPCR. In bioRxiv. https://doi.org/10.1101/2021.03.10.21253291
Xiao, F., Sun, J., Xu, Y., Li, F., Huang, X., Li, H., Zhao, J., Huang, J., & Zhao, J. (2020). Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerging Infectious Diseases, 26(8), 1920–1922. https://doi.org/10.3201/eid2608.200681
Xie, C., Zhao, H., Li, K., Zhang, Z., Lu, X., Peng, H., Wang, D., Chen, J., Zhang, X., Wu, D., Gu, Y., Yuan, J., Zhang, L., & Lu, J. (2020). The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health, 20(1), 1202. https://doi.org/10.1186/s12889-020-09296-y
Xu, X.-W., Wu, X.-X., Jiang, X.-G., Xu, K.-J., Ying, L.-J., Ma, C.-L., Li, S.-B., Wang, H.-Y., Zhang, S., Gao, H.-N., Sheng, J.-F., Cai, H.-L., Qiu, Y.-Q., & Li, L.-J. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ (Clinical Research Ed.), 368, m606. https://doi.org/10.1136/bmj.m606
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet. Respiratory Medicine, 8(5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5
Yaniv, K., Ozer, E., Plotkin, N., Bhandarkar, N. S., & Kushmaro, A. (2021). RT-qPCR assay for detection of British (B.1.1.7) and South Africa (B.1.351) variants of SARS-CoV-2. MedRxiv 2021:2021.02.25.21252454. https://doi.org/10.1101/2021.02.25.21252454
Zhang, D., Ling, H., Huang, X., Li, J., Li, W., Yi, C., Zhang, T., Jiang, Y., He, Y., Deng, S., Zhang, X., Wang, X., Liu, Y., Li, G., & Qu, J. (2020b). Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. The Science of the Total Environment, 741(140445), 140445. https://doi.org/10.1016/j.scitotenv.2020.140445
Zhang, D., Yang, Y., Huang, X., Jiang, J., Li, M., Zhang, X., Ling, H., Li, J., Liu, Y., Li, G., Li, W., Yi, C., Zhang, T., Jiang, Y., Xiong, Y., Hu, Z., Wang, X., Deng, S., Zhao, P., & Qu, J. (2020a). SARS-CoV-2 spillover into hospital outdoor environments. In bioRxiv. https://doi.org/10.1101/2020.05.12.20097105
Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology, 296(2), E15–E25. https://doi.org/10.1148/radiol.2020200490
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Pedro Henrique Mainardi; Ederio Dino Bidoia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.