Ventajas de usar antibioticos encapsulados en liposomas para combatir infecciones causadas por enterobactérias
DOI:
https://doi.org/10.33448/rsd-v10i6.15439Palabras clave:
Bacterias Gram negativas; Resistencia bacteriana; Antimicrobianos; Nanotecnología.Resumen
Introducción: El tratamiento de enfermedades causadas por enterobacterias es un desafío cada vez mayor. Este problema se debe a la ineficacia de los antibióticos para combatir patógenos o para estimular la fagocitosis de células del sistema reticuloendotelial, principalmente contra bacterias que se instalan y multiplican dentro de las células fagocíticas. Algunos antibióticos son ineficaces para ingresar a las células o tienen su capacidad reducida por la membrana plasmática. De esta forma, la comunidad científica une esfuerzos en la búsqueda de nuevas alternativas terapéuticas que superen estas limitaciones. Los liposomas son nanoportadores de lípidos capaces de encapsular antibióticos, con el objetivo de aumentar la especificidad de la administración, la concentración de compuestos administrados al sitio, mantener la concentración plasmática de los medicamentos y proteger los principios activos. Así, el objetivo de esta revisión fue describir las principales propiedades liposomales, enfatizando las ventajas de utilizar estas vesículas lipídicas para administrar antibióticos frente a infecciones causadas por enterobacterias. Metodología: Se trata de una revisión bibliográfica mediante búsquedas en bases de datos electrónicas nacionales e internacionales, seleccionando artículos de 2007 a 2020 utilizando los descriptores: Bacterias gramnegativas, Resistencia bacteriana, Antimicrobianos y Nanotecnología. Resultados: Liposomas catiónicos y furtivos constituidos principalmente por fármacos encapsulantes de colesterol, PEG, fosfatidilcolina y carboximetilquitosano como amoxicilina, ciprofloxacina, cloxacilina, vancomicina, azitromicina, amoxicilina, cefepima, gentamicina y cefotaxima. Los liposomas que encapsulan fármacos como cloranfenicol, azitromicina, gentamicina y polimixina B mostraron una mayor eficacia antibiofilm en comparación con las enterobacterias en comparación con los fármacos no encapsulados. Conclusión: Los resultados mostraron que los liposomas tienen un potencial terapéutico significativo para el tratamiento de infecciones causadas por enterobacterias.
Citas
Abed, N. & Couvreur, P. (2014). Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. International Journal of Antimicrobial Agents, 43 (6), 485-496.
Aghapour, Z., Gholizadeh, P., Ganbarov, K., Bialvaei, A. Z., Mahmood, S. S., Tanomand, A., Yousef M.; Asgharzadeh M.; Yousef B. & Kafil, H. S. (2019). Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infection and Drug Resistance, 12, 965.
Aghdam, M. A., Bagheri, R., Mosafer, J., Baradaran, B., Hashemzaei, M., Baghbanzadeh, A., Guardia M. & Mokhtarzadeh, A. (2019). Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of Controlled Release, 315, 1-22.
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei M.; Kouhi M. & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8 (1), 1-9.
Alhariri, M., Majrashi, M. A., Bahkali, A. H., Almajed, F. S., Azghani, A. O., Khiyami, M. A., Alyamani E. J.; Aljohani S. M. & Halwani, M. A. (2017). Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities. International Journal of Nanomedicine, 12, 6949.
Aljihani, S. A., Alehaideb, Z., Alarfaj, R. E., Alghoribi, M. F., Akiel, M. A., Alenazi, T. H., Al-Fahad J. A., Al Tamimi, S. M., Albakr, T. M., Alshehri, A., Alyahya, S. M., Yassin, A. E. B. & Halwani, M. A. (2020). Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi Journal of Biological Sciences, 27 (11), 3065-3071.
Alotaibi, F. (2019). Carbapenem-resistant Enterobacteriaceae: an update narrative review from Saudi Arabia. Journal of Infection and Public Health, 12 (4), 465-471.
Aryasomayajula, B., Salzano, G. & Torchilin, V. P. (2017). Multifunctional liposomes. Methods in Molecular Biology, 1530, 41-61.
Asfour, H. Z. (2017). Cefotaxime combined ellagic acid in a liposomal form for more stable and antimicrobial effective formula. American Journal of Microbiological Research, 5 (5), 113-117.
Babushkina, I. V., Bondarenko, A. S., Ulyanov, V. Y. & Mamonova, I. A. (2020). Biofilm formation by gram-negative bacteria during implant-associated infection. Bulletin of Experimental Biology and Medicine, 169 (3), 365-368.
Batista, C. M., Carvalho, C. M. B. D. & Magalhães, N. S. S. (2007). Lipossomas e suas aplicações terapêuticas: Estado da arte. Revista Brasileira de Ciências Farmacêuticas, 43 (2), 167-179.
Bennett, J. E.; Dolin, R. & Blaser, M. J. (2014). Mandell, douglas, and bennett's principles and practice of infectious diseases: 2-volume set (Vol. 2). Elsevier Health Sciences.
Briones, E., Colino, C. I. & Lanao, J. M. (2008). Delivery systems to increase the selectivity of antibiotics in phagocytic cells. Journal of Controlled Release, 125 (3), 210-227.
Cai, L., Wang, H., Liang, L., Wang, G., Xu, X. & Wang, H. (2018). Response of formed‐biofilm of Enterobacter cloacae, Klebsiella oxytoca, and Citrobacter freundii to chlorite‐based disinfectants. Journal of Food Science, 83 (5), 1326-1332.
Carole, G. M. B. V., Kouadio, G. N., Baguy, O. M., Djénéba, O. G., Ayayi, A., Bertin, T. K., Anatole T. A., Innocent K. K., Kpoda D. S., Eric T., Ali K., Fernique K., Alphonse K., Mireille D. & Bmr, G. (2018). Antimicrobial resistance profile and molecular characterization of extended-spectrum beta-lactamase genes in enterobacteria isolated from human, animal and environment. Journal of Advances in Microbiology, 10 (1), 1-9.
Cé, R., Pacheco, B. Z., Ciocheta, T. M., Barbosa, F. S., de CS Alves, A., Dallemole, D. R. & Pohlmann, A. R. (2021). Antibacterial activity against Gram-positive bacteria using fusidic acid-loaded lipid-core nanocapsules. Reactive and Functional Polymers, 162 (1), 104876.
Cohen, J.; Powderly, W. & Opal, S. (2016). Infectious diseases. Elsevier.
Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S. & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44 (1), 381-391.
Davin-Regli, A., Lavigne, J. P. & Pagès, J. M. (2019). Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clinical Microbiology Reviews, 32 (4).
Dias-Souza, M. V., Soares, D. L. & Dos Santos, V. L. (2017). Comparative study of free and liposome-entrapped chloramphenicol against biofilms of potentially pathogenic bacteria isolated from cooling towers. Saudi Pharmaceutical Journal, 25 (7), 999-1004.
Dou, Y., Hynynen, K. & Allen, C. (2017). To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. Journal of Controlled Release, 249, 63-73.
El-Hammadi, M. M. & Arias, J. L. (2019). An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opinion on Therapeutic Patents, 29 (11), 891-907.
Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. São Paulo, Brasil: Artes Médicas.
Filipczak, N., Pan, J., Yalamarty, S. S. K. & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 04-22.
Fu, Y. Y., Zhang, L., Yang, Y., Liu, C. W., He, Y. N., Li, P. & Yu, X. (2019). Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. International Journal of Nanomedicine, 14, 1805-1815.
Ghatage, T., Jadhav, S. & Kore, V. (2017). A Review on Stealth Liposomes: Novel Drug Delivery System. International Journal of Scientific Engineering and Technology Research, 6 (14), 2744-2750.
Hamblin, K. A., Armstrong, S. J., Barnes, K. B., Davies, C., Wong, J. P., Blanchard, J. D., Harding S. V., Simpson A. J. H. & Atkins, H. S. (2014). Liposome encapsulation of ciprofloxacin improves protection against highly virulent Francisella tularensis strain Schu S4. Antimicrobial Agents and Chemotherapy, 58 (6), 3053-3059.
Has, C. & Sunthar, P. (2020). A comprehensive review on recent preparation techniques of liposomes. Journal of Liposome Research, 30 (4), 336-365.
Haussler, S. & Fuqua, C. (2013). Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. Journal of Bacteriology, 195 (13), 2947-2958.
Huh, A. J. & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156 (2), 128-145.
Ichim, D. L., Duceac, L. D., Marcu, C., Iordache, A. C., Ciomaga, I. M., Luca, A. C., Goroftef E. R. B.; Mitrea G.; Damir D. & Stafie, L. (2019). Synthesis and characterization of colistin loaded nanoparticles used to combat multi-drug resistant microorganisms. Revista de Chimie 70 (10).
Jainamboo, M., Gopukumar, S. & Praseetha, P. (2017). Improving the clinical efficacy of drugs by liposomes against resistant bacteria (Mdr Bacteria) – An in vitro study. International Journal of Pharma and Bio Sciences, 8 (3), 42-57.
Kang, E., Crouse, A., Chevallier, L., Pontier, S. M., Alzahrani, A., Silué, N., Valois F. X. C.; Montagutelli X.; Gruenheid, S. & Malo, D. (2018). Enterobacteria and host resistance to infection. Mammalian Genome, 29 (7), 558-576.
Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z. & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307 (8), 481-489.
Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357-372.
Linninge, C., Roth, B., Erlanson-Albertsson, C., Molin, G., Toth, E. & Ohlsson, B. (2018). Abundance of Enterobacteriaceae in the colon mucosa in diverticular disease. World Journal of Gastrointestinal Pathophysiology, 9 (1), 18.
Li, X. X., Shi, S., Rong, L., Feng, M. Q. & Zhong, L. (2018). The impact of liposomal linolenic acid on gastrointestinal microbiota in mice. International Journal of Nanomedicine, 13, 1399-1409.
Loh, B., Gondil, V. S., Manohar, P., Khan, F. M., Yang, H. & Leptihn, S. (2021). Encapsulation and delivery of therapeutic phages. Applied and Environmental Microbiology, 87 (5).
Moghimipour, E. & Handali, S. (2013). Liposomes as drug delivery systems: properties and applications. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4 (1), 169-185.
Monteiro, N., Martins, M., Martins, A., Fonseca, N. A., Moreira, J. N., Reis, R. L. & Neves, N. M. (2015). Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia, 18, 196-205.
Montso, K. P., Dlamini, S. B., Kumar, A. & Ateba, C. N. (2019). Antimicrobial resistance factors of extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae isolated from Cattle Farms and Raw Beef in North-West Province, South Africa. BioMed Research International, 2019.
Moyá, M. L., López-López, M., Lebrón, J. A., Ostos, F. J., Pérez, D., Camacho, V., Beck I., Bohórquez V. M., Camean M., Madinabeitia N. & López-Cornejo, P. (2019). Preparation and characterization of new liposomes. Bactericidal activity of cefepime encapsulated into cationic liposomes. Pharmaceutics, 11 (2), 69.
Narayana, P. S. V. V. S. & Srihari, P. S. V. V. (2019). Biofilm resistant surfaces and coatings on implants: A review. Materials Today: Proceedings, 18, 4847-4853.
Nicolosi, D., Cupri, S., Genovese, C., Tempera, G., Mattina, R., & Pignatello, R. (2015). Nanotechnology approaches for antibacterial drug delivery: preparation and microbiological evaluation of fusogenic liposomes carrying fusidic acid. International Journal of Antimicrobial Agents, 45 (6), 622-626.
OPAS-OMS (2017). OMS publica lista de bactérias para as quais se necessitam novos antibióticos urgentemente. https://www.paho.org/bra/index.php?option=com_content&view=article&id=5357:oms-publica-lista-de-bacterias-para-as-quais-se-necessitam-novos-antibioticos-urgentemente&Itemid=812.
Pati, N. B., Doijad, S. P., Schultze, T., Mannala, G. K., Yao, Y., Jaiswal, S., Ryan D.; Suar M.; Gwozdzinski K., Bunk B., Mraheil M. A., Hegemann J. D., Sproer C., Goesmann A., Falgenhauer L., Hain T., Imirzalioglu C., Mshana S. E., Overmann J. & Chakraborty, T. (2018). Enterobacter bugandensis: a novel enterobacterial species associated with severe clinical infection. Scientific Reports, 8 (1), 1-11.
Porcheron G., Garénaux A., Proulx J., Sabri M. & Dozois C. M. (2013). Iro, copper, zin, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the differente metal transport systems for virulence. Frontiers in Cellular and Infection Microbiology, Vol. 3.
Ramos-Vivas, J., Chapartegui-González, I., Fernández-Martínez, M., González-Rico, C., Fortún, J., Escudero, R., Marco F., Linares L., Montejo M., Aranzamendi M., Muñoz P., Valerio M., Aguado J. M., Resino E., Ahufnger I. G., Veja A. P., Martínez-Martínez L. & Fariñas, M. C. (2019). Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Scientific Reports, 9 (1), 1-10.
Rukavina, Z. & Vanić, Ž. (2016). Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics, 8 (2), 18.
Ruppé, E., Andremont, A. & Armand-Lefèvre, L. (2018). Digestive tract colonization by multidrug-resistant Enterobacteriaceae in travellers: an update. Travel Medicine and Infectious Disease, 21, 28-35.
Santos, A. L., Dos Santos, A. P., Ito, C. R. M., Queiroz, P. H. P. D., de Almeida, J. A., de Carvalho Júnior, M. A. B., Oliveira C. Z., Avelino M. A. G., Wastowski I. J., Gomes G. P. L. A.; Souza A. C. S., Vasconcelos L. S. N. O. L., Santos M. O., Silva C. A. & Carneiro, L. C. (2020). Profile of Enterobacteria resistant to beta-lactams. Antibiotics, 9 (7), 410.
Trucillo, P., Ferrari, P. F., Campardelli, R., Reverchon, E. & Perego, P. (2020). A supercritical assisted process for the production of amoxicillin-loaded liposomes for antimicrobial applications. The Journal of Supercritical Fluids, 163, 104842.
Vanić, Ž., Rukavina, Z., Manner, S., Fallarero, A., Uzelac, L., Kralj, M., Klaric D. A., Bogdanov A., Raffai T., Virok D. P., Fillipovic-Grcic J. & Škalko-Basnet, N. (2019). Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections. International Journal of Nanomedicine, 14, 5957.
Vassallo, A., Silletti, M. F., Faraone, I. & Milella, L. (2020). Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. Journal of Nanomaterials, 2020.
Zhang, Y. (2014). Persisters, persistent infections and the Yin–Yang model. Emerging Microbes & Infections, 3 (1), 1-10.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Júlio Eduardo Barbosa da Silva; Jaqueline Barbosa de Souza; Daniel Charles dos Santos Macêdo; Luís André de Almeida Campos; Isabella Macário Ferro Cavalcanti
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.