Producción de nanopartículas de ferritas espinela: Un estudio bibliométrico
DOI:
https://doi.org/10.33448/rsd-v9i1.1546Palabras clave:
Nanomateriales; magnetismo; CiteSpace; aplicaciones.Resumen
En este artículo, se realizó un análisis bibliométrico de la producción de ferrita de espinela, con el objetivo de ampliar la gestión del conocimiento del área de investigación, así como identificar perspectivas futuras sobre la aplicación de estas estructuras y arrojar luz sobre la investigación posterior. El estudio fue diseñado en base a un análisis estadístico y cualitativo de los documentos de la base de datos de Web of Science (WoS) de 1995-2017, utilizando como herramienta adicional el software CiteSpace, que permite la expansión del dominio del conocimiento sobre el tema. como la obtención de un conjunto de registros bibliográficos de publicaciones relevantes, con la identificación posterior de grupos de investigación vinculados (grupos). El software CiteSpace proporciona un conjunto de parámetros empíricos, entre ellos el Betweenness Centrality (BC), que describe la influencia de un artículo determinado en la transferencia de información entre el conjunto de publicaciones en estudio. A través de los resultados fue posible identificar un crecimiento significativo en el número de publicaciones y citas. Los países con el mayor número de publicaciones son India (946), China (483) y Estados Unidos (247), y Estados Unidos tiene el mayor parámetro de centralidad (BC), lo que refleja su papel destacado en la transmisión. información sobre ferrita tipo espinela. Al analizar la descomposición de las categorías de WoS en grandes grupos o grupos, se observó el predominio de tres áreas de acuerdo con el número de co-citas: propiedades magnéticas, propiedades electromagnéticas y propiedades efectivas de electrocatálisis, que reflejan las principales objetivos de investigación sobre este tema. Entre las palabras clave principales, "ferrita de cobalto" tiene el parámetro BC más grande, lo que revela un mayor interés de la comunidad científica en la ferrita de cobalto. Los resultados de los grupos se corroboraron a partir de la identificación de las principales aplicaciones de ferrita tipo espinela en los últimos dos años, en los que se observó el rendimiento predominante de estos materiales en el tratamiento de aguas residuales, dispositivos magnéticos, sensores y aplicaciones médicas.
Citas
Abbas, Y. M. et al. (2011) ‘Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite’, Journal of Magnetism and Magnetic Materials. Elsevier, 323(22), pp. 2748–2756. doi: 10.1016/j.jmmm.2011.05.038.
Amiri, S. and Shokrollahi, H. (2013) ‘The role of cobalt ferrite magnetic nanoparticles in medical science’, Materials Science and Engineering C. Elsevier B.V., 33(1), pp. 1–8. doi: 10.1016/j.msec.2012.09.003.
Ansari, M. et al. (2017) ‘Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4nanoparticles as a magnetic drug delivery system’, Journal of Magnetism and Magnetic Materials. Elsevier B.V., 439, pp. 67–75. doi: 10.1016/j.jmmm.2017.04.084.
Ayesh, A. I. et al. (2017) ‘Spinel ferrite nanoparticles for H2S gas sensor’, Applied Physics A. Springer Berlin Heidelberg, 123(11), p. 682. doi: 10.1007/s00339-017-1305-7.
Basiri, F. and Taei, M. (2017) ‘Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine’, Microchimica Acta. Microchimica Acta, 184(1), pp. 155–162. doi: 10.1007/s00604-016-1995-0.
Baykal, A. et al. (2016) ‘MnCrxFe22xO4 Nanoparticles: Magnetic and Microwave Absorption Properties’, Journal of Inorganic and Organometallic Polymers and Materials, 26(1), pp. 134–141. doi: 10.1007/s10904-015-0288-0.
Bhujun, B., Tan, M. T. T. and Shanmugam, A. S. (2016) ‘Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors’, Ceramics International. Elsevier, 42(5), pp. 6457–6466. doi: 10.1016/j.ceramint.2015.12.118.
Bhukal, S. et al. (2016) ‘Substituted Co-Cu-Zn nanoferrites: Synthesis, fundamental and redox catalytic properties for the degradation of methyl orange’, RSC Advances. Royal Society of Chemistry, 6(2), pp. 1360–1375. doi: 10.1039/c5ra22561b.
Bindu, K. et al. (2016) ‘Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2sensor and supercapacitor applications’, Electrochimica Acta. Elsevier Ltd, 217, pp. 139–149. doi: 10.1016/j.electacta.2016.09.083.
Buzea, C., Pacheco, I. I. and Robbie, K. (2007) ‘Nanomaterials and nanoparticles: Sources and toxicity’, Biointerphases, 2(4), pp. MR17–MR71. doi: 10.1116/1.2815690.
Caltun, O. et al. (2008) ‘Substituted cobalt ferrites for sensors applications’, Journal of Magnetism and Magnetic Materials, 320(20), pp. 869–873. doi: 10.1016/j.jmmm.2008.04.067.
Chamoumi, M. and Abatzoglou, N. (2016) ‘NiFe2O4 production from α-Fe2 O 3 via improved solid state reaction: Application as catalyst in CH 4 dry reforming’, The Canadian Journal of Chemical Engineering, 94(9), pp. 1801–1808. doi: 10.1002/cjce.22561.
Chen, C. (2005) ‘The centrality of pivotal points in the evolution of scientific networks’, Proceedings of the 10th international conference on Intelligent user interfaces - IUI ’05, p. 98. doi: 10.1145/1040830.1040859.
Chen, C. (2017) ‘Science Mapping: A Systematic Review of the Literature’, Journal of Data and Information Science, 2(2), pp. 1–40. doi: 10.1515/jdis-2017-0006.
Chen, X. J. et al. (2017) ‘Preparation and Characterization of Magnetic Cobalt Ferrites/SBA-15 Nanocomposite Adsorbents and the Removal of Methylene Blue’, Nano, 12(5), pp. 1–8. doi: 10.1142/S1793292017500606.
Choi, K. H. et al. (2016) ‘Size-Dependent photodynamic anticancer activity of biocompatible multifunctional magnetic submicron particles in prostate cancer cells’, Molecules, 21(9), pp. 1–14. doi: 10.3390/molecules21091187.
Choi, Y. H. et al. (2017) ‘Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels’, ChemSusChem, 10(23), pp. 4764–4770. doi: 10.1002/cssc.201701437.
Dehghani, F., Hashemian, S. and Shibani, A. (2017) ‘Effect of calcination temperature for capability of MFe2O4(M = Co, Ni and Zn) ferrite spinel for adsorption of bromophenol red’, Journal of Industrial and Engineering Chemistry. The Korean Society of Industrial and Engineering Chemistry, 48, pp. 36–42. doi: 10.1016/j.jiec.2016.11.022.
Dhand, V. et al. (2017) ‘Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons’, International Journal of Precision Engineering and Manufacturing - Green Technology, 4(4), pp. 441–451. doi: 10.1007/s40684-017-0049-3.
Dilshad, M. et al. (2016) ‘Fabrication and characterization of Ni1+xZrxFe2−2xO4nanoparticles for potential applications in high frequency devices’, Ceramics International. Elsevier, 42(14), pp. 16359–16363. doi: 10.1016/j.ceramint.2016.07.001.
Domínguez-Arvizu, J. L. et al. (2017) ‘Optical properties determination of NiFe2O4nanoparticles and their photocatalytic evaluation towards hydrogen production’, International Journal of Hydrogen Energy, 42(51), pp. 30242–30248. doi: 10.1016/j.ijhydene.2017.09.180.
Du, Y. et al. (2016) ‘Magnetic CoFe2O4nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants’, Journal of Hazardous Materials. Elsevier B.V., 308, pp. 58–66. doi: 10.1016/j.jhazmat.2016.01.035.
Elkholy, A. E., El-Taib Heakal, F. and Allam, N. K. (2017) ‘Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors’, RSC Advances. Royal Society of Chemistry, 7(82), pp. 51888–51895. doi: 10.1039/c7ra11020k.
Falsafi, F. et al. (2017) ‘Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor’, Ceramics International, 43(1), pp. 1029–1037. doi: 10.1016/j.ceramint.2016.10.035.
Gan, W. et al. (2016) ‘Removal of oils from water surface via useful recyclable CoFe2O4/sawdust composites under magnetic field’, Materials and Design. Elsevier B.V., 98, pp. 194–200. doi: 10.1016/j.matdes.2016.03.018.
Goyal, A. et al. (2014) ‘CoMn0.2Fe1.8O4 ferrite nanoparticles engineered by sol-gel technology: An expert and versatile catalyst for the reduction of nitroaromatic compounds’, Journal of Materials Chemistry A. Royal Society of Chemistry, 2(44), pp. 18848–18860. doi: 10.1039/c4ta03900a.
Haija, M. A. et al. (2017) ‘Characterization of H2S gas sensor based on CuFe2O4nanoparticles’, Journal of Alloys and Compounds. Elsevier B.V, 690, pp. 461–468. doi: 10.1016/j.jallcom.2016.08.174.
Hammad, M., Nica, V. and Hempelmann, R. (2017) ‘Synthesis and Characterization of Bi-Magnetic Core/Shell Nanoparticles for Hyperthermia Applications’, IEEE Transactions on Magnetics, 53(4). doi: 10.1109/TMAG.2016.2635696.
He, Y., Dai, C. and Zhou, X. (2017) ‘Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine’, Environmental Science and Pollution Research. Environmental Science and Pollution Research, 24(2), pp. 2065–2074. doi: 10.1007/s11356-016-7978-1.
Hoque, S. M. et al. (2016) ‘Synthesis and characterization of ZnFe2O4nanoparticles and its biomedical applications’, Materials Letters. Elsevier, 162(3), pp. 60–63. doi: 10.1016/j.matlet.2015.09.066.
Hou, J., Yang, X. and Chen, C. (2018) ‘Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)’, Scientometrics. Springer Netherlands, 115(2), pp. 869–892. doi: 10.1007/s11192-018-2695-9.
Hyder, F. and Manjura Hoque, S. (2017) ‘Brain tumor diagnostics and therapeutics with superparamagnetic ferrite nanoparticles’, Contrast Media and Molecular Imaging, 2017. doi: 10.1155/2017/6387217.
Hyeon, T. (2003) ‘Chemical synthesis of magnetic nanoparticles’, Chem. Commun., (8), pp. 927–934. doi: 10.1039/b207789b.
Ibrahim, I. et al. (2016) ‘Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction’, Applied Catalysis B: Environmental. Elsevier B.V., 181, pp. 389–402. doi: 10.1016/j.apcatb.2015.08.005.
Ignat, M. et al. (2016) ‘Novel Synthesis Route for Chitosan-Coated Zinc Ferrite Nanoparticles as Potential Sorbents for Wastewater Treatment’, Chemical Engineering Communications, 203(12), pp. 1591–1599. doi: 10.1080/00986445.2016.1185711.
Jaime-González, J. et al. (2016) ‘Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide’, Journal of Solid State Electrochemistry, 20(4), pp. 1191–1198. doi: 10.1007/s10008-015-2938-0.
Jauhar, S. et al. (2016) Tuning the properties of cobalt ferrite: a road towards diverse applications, RSC Adv. doi: 10.1039/C6RA21224G.
Jeong, U. et al. (2007) ‘Superparamagnetic colloids: Controlled synthesis and niche applications’, Advanced Materials, 19(1), pp. 33–60. doi: 10.1002/adma.200600674.
Jesudoss, S. K. et al. (2016) ‘Studies on the efficient dual performance of Mn1–xNixFe2O4spinel nanoparticles in photodegradation and antibacterial activity’, Journal of Photochemistry and Photobiology B: Biology, 165, pp. 121–132. doi: 10.1016/j.jphotobiol.2016.10.004.
Jung, K. W., Lee, S. and Lee, Y. J. (2017) ‘Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions’, Bioresource Technology. Elsevier, 245(September), pp. 751–759. doi: 10.1016/j.biortech.2017.09.035.
Kovalenko, A. et al. (2016) ‘Towards improved efficiency of bulk-heterojunction solar cells using various spinel ferrite magnetic nanoparticles’, Organic Electronics: physics, materials, applications, 39, pp. 118–126. doi: 10.1016/j.orgel.2016.09.033.
Krishna Surendra, M. et al. (2014) ‘Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles’, Journal of Nanoparticle Research, 16(12). doi: 10.1007/s11051-014-2773-8.
Kumar, A. et al. (2012) ‘Nanotechnology: a review.’, Journal of Pharmacy Research, 5(7), pp. 3630–3634.
Kumar, A. (2014) Nanotechnology Development in India: An Overview. New Delhi.
Kwon, J. M. et al. (2017) ‘Facile hydrothermal synthesis of cubic spinel AB2O4type MnFe2O4nanocrystallites and their electrochemical performance’, Applied Surface Science. Elsevier B.V., 413, pp. 83–91. doi: 10.1016/j.apsusc.2017.04.022.
Lassoued, A. et al. (2018) ‘Nanocrystalline NixCo(0.5−x)Zn0.5Fe2O4ferrites: fabrication through co-precipitation route with enhanced structural, magnetic and photo-catalytic activity’, Journal of Materials Science: Materials in Electronics. Springer US, 29(9), pp. 7333–7344. doi: 10.1007/s10854-018-8723-y.
Lee, J. H. et al. (2007) ‘Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging’, Nature Medicine, 13(1), pp. 95–99. doi: 10.1038/nm1467.
Li, C. (2017) ‘A bibliometric analysis of research on haze during 2000–2016’. Environmental Science and Pollution Research, pp. 24733–24742.
Manikandan, A. et al. (2014) ‘A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4nanostructures’, Journal of Molecular Structure. Elsevier B.V., 1076, pp. 188–200. doi: 10.1016/j.molstruc.2014.07.054.
Mathew, D. S. and Juang, R. S. (2007) ‘An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions’, Chemical Engineering Journal, 129(1–3), pp. 51–65. doi: 10.1016/j.cej.2006.11.001.
Nakhate, A. V. and Yadav, G. D. (2017) ‘Hydrothermal Synthesis of CuFe2O4Magnetic Nanoparticles as Active and Robust Catalyst for N-arylation of Indole and Imidazole with Aryl Halide’, ChemistrySelect, 2(8), pp. 2395–2405. doi: 10.1002/slct.201601846.
Narsimulu, D. et al. (2016) ‘Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4as anode material for lithium battery applications’, Ceramics International. Elsevier, 42(15), pp. 16789–16797. doi: 10.1016/j.ceramint.2016.07.168.
Navadeepthy, N. D. et al. (2017) ‘N-doped Graphene/ZnFe2O4: A novel nanocomposite for intrinsic peroxidase based sensing of H2O2’, Materials Research Bulletin. Elsevier Ltd, 95, pp. 1–8. doi: 10.1016/j.materresbull.2017.06.033.
Park, J. et al. (2007) ‘Synthesis of monodisperse spherical nanocrystals’, Angewandte Chemie - International Edition, 46(25), pp. 4630–4660. doi: 10.1002/anie.200603148.
Patil, S. N. et al. (2016) ‘Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors’, Sensors and Actuators, A: Physical, 244, pp. 35–43. doi: 10.1016/j.sna.2016.04.019.
Peeples, B. et al. (2014) ‘Structural, stability, magnetic, and toxicity studies of nanocrystalline iron oxide and cobalt ferrites for biomedical applications’, Journal of Nanoparticle Research, 16(2). doi: 10.1007/s11051-014-2290-9.
Peng, X. et al. (2017) ‘Bio-power performance enhancement in microbial fuel cell using Ni-ferrite decorated anode’, RSC Advances. Royal Society of Chemistry, 7(26), pp. 16027–16032. doi: 10.1039/C7RA01253E.
Praveen Kumar, J. et al. (2017) ‘Metal ferrite nanoparticles: Synthesis, characterization, and studies on decontamination of sulfur mustard’, Journal of Alloys and Compounds. Elsevier B.V, 692, pp. 833–840. doi: 10.1016/j.jallcom.2016.09.083.
Rahman, A. et al. (2016) ‘Microwave dielectric properties of Mn x Zn(1−x)Fe2O4 ceramics and their compatibility with patch antenna’, Journal of Sol-Gel Science and Technology. Springer US, 77(2), pp. 470–479. doi: 10.1007/s10971-015-3937-4.
Rajput, N. (2017) ‘Development of Nanotechnology in India: A Review’, IOSR Journal of Applied Physics, 09(03), pp. 45–50. doi: 10.9790/4861-0903034550.
Rasheed, A. et al. (2016) ‘ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications’, Ceramics International. Elsevier, 42(14), pp. 15747–15755. doi: 10.1016/j.ceramint.2016.07.036.
Rashmi, Shankar K. et al. (2017) ‘Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles’, Journal of Solid State Chemistry. Elsevier Inc., 255(July), pp. 178–192. doi: 10.1016/j.jssc.2017.08.013.
Rashmi, S. K. et al. (2017) ‘Solar light responsive Sm-Zn ferrite nanoparticle as efficient photocatalyst’, Materials Science and Engineering B: Solid-State Materials for Advanced Technology. Elsevier, 225(May), pp. 86–97. doi: 10.1016/j.mseb.2017.08.012.
Reddy, D. H. K. et al. (2017) ‘Fabrication of Stable and Regenerable Amine Functionalized Magnetic Nanoparticles as a Potential Material for Pt(IV) Recovery from Acidic Solutions’, ACS Applied Materials and Interfaces, 9(22), pp. 18650–18659. doi: 10.1021/acsami.6b16813.
Reddy, D. H. K. and Yun, Y. S. (2016) ‘Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?’, Coordination Chemistry Reviews. Elsevier B.V., 315, pp. 90–111. doi: 10.1016/j.ccr.2016.01.012.
Sánchez, J. et al. (2017) ‘Synthesis of MnxGa1−xFe2O4magnetic nanoparticles by thermal decomposition method for medical diagnosis applications’, Journal of Magnetism and Magnetic Materials. Elsevier, 427(June 2016), pp. 272–275. doi: 10.1016/j.jmmm.2016.10.098.
Sharma, U. S. and Shah, R. (2016) ‘Study of polyaniline coated CuFe2O4nanoparticles and their application in biosensor’, AIP Conference Proceedings, 1728. doi: 10.1063/1.4946326.
Shetty, K. et al. (2017) ‘A comparative study on CuFe2O4, ZnFe2O4and NiFe2O4: Morphology, Impedance and Photocatalytic studies’, Materials Today: Proceedings. Elsevier Ltd, 4(11), pp. 11806–11815. doi: 10.1016/j.matpr.2017.09.098.
Sivakumar, P. et al. (2011) ‘Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method’, Materials Research Bulletin. Elsevier Ltd, 46(12), pp. 2204–2207. doi: 10.1016/j.materresbull.2011.09.010.
Srivastava, V., Kohout, T. and Sillanpää, M. (2016) Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater, Journal of Environmental Chemical Engineering. Elsevier B.V. doi: 10.1016/j.jece.2016.06.002.
Subbiah, K. et al. (2017) ‘Fabrication of a cerium-doped nickel ferrite solid-state reference electrode and its performance evaluation in concrete environment’, Sensors and Actuators, B: Chemical. Elsevier B.V., 251, pp. 509–523. doi: 10.1016/j.snb.2017.05.002.
Sun, S. et al. (2004) ‘Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles’, Journal of the American Chemical Society, 126(1), pp. 273–279. doi: 10.1021/ja0380852.
Sundararajan, M. et al. (2017) ‘Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method’, Journal of Physics and Chemistry of Solids, 108(March), pp. 61–75. doi: 10.1016/j.jpcs.2017.04.002.
Tan, C. et al. (2017) ‘Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4and MnFe2O4as a heterogeneous catalyst of peroxymonosulfate’, Separation and Purification Technology. Elsevier B.V., 175, pp. 47–57. doi: 10.1016/j.seppur.2016.11.016.
Thanigai Arul, K. et al. (2016) ‘Novel polyvinyl alcohol polymer based nanostructure with ferrites co-doped with nickel and cobalt ions for magneto-sensor application’, Polymer International, 65(12), pp. 1482–1485. doi: 10.1002/pi.5242.
Toksha, B. G. et al. (2017) ‘Auto-ignition synthesis of CoFe2O4 with Al3+ substitution for high frequency applications’, Ceramics International. Elsevier Ltd and Techna Group S.r.l., 43(16), pp. 14347–14353. doi: 10.1016/j.ceramint.2017.07.191.
Velinov, N. et al. (2017) ‘Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition’, Materials Research Bulletin. Elsevier Ltd, 95, pp. 556–562. doi: 10.1016/j.materresbull.2017.06.019.
Warsi, M. F. et al. (2017) ‘New LiNi0.5PrxFe2−xO4nanocrystallites: Synthesis via low cost route for fabrication of smart advanced technological devices’, Ceramics International, 43(17), pp. 14807–14812. doi: 10.1016/j.ceramint.2017.07.228.
Wu, J. et al. (2016) ‘Highly selective gas sensing properties of partially inversed spinel zinc ferrite towards H2S’, Sensors and Actuators, B: Chemical. Elsevier B.V., 235, pp. 258–262. doi: 10.1016/j.snb.2016.05.083.
Wu, X. et al. (2016) ‘PEG-assisted hydrothermal synthesis of CoFe2O4nanoparticles with enhanced selective adsorption properties for different dyes’, Applied Surface Science. Elsevier B.V., 389, pp. 1003–1011. doi: 10.1016/j.apsusc.2016.08.053.
Yan, K. et al. (2013) ‘Facile synthesis and catalytic property of spinel ferrites by a template method’, Journal of Alloys and Compounds, 552, pp. 405–408. doi: 10.1016/j.jallcom.2012.11.054.
Žalnėravičius, R. et al. (2016) ‘Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles’, Journal of Nanoparticle Research, 18(10). doi: 10.1007/s11051-016-3612-x.
Zarbin, A. J. G. (2007) ‘QUÍMICA DE (NANO)MATERIAIS’, 30(6), pp. 1469–1479.
Zhao, Y. et al. (2017) ‘Facile preparation of NiFe2O4/MoS2composite material with synergistic effect for high performance supercapacitor’, Journal of Alloys and Compounds, 726, pp. 608–617. doi: 10.1016/j.jallcom.2017.07.327.
Zheng, M., Fu, H. and Ho, Y. (2017) ‘Research trends and hotspots related to ammonia oxidation based on bibliometric analysis’. Environmental Science and Pollution Research, pp. 20409–20421. doi: 10.1007/s11356-017-9711-0.
Zhu, J. and Hua, W. (2017) ‘Visualizing the knowledge domain of sustainable development research between 1987 and 2015: a bibliometric analysis’, Scientometrics. Springer Netherlands, 110(2), pp. 893–914. doi: 10.1007/s11192-016-2187-8.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.