Desarrollo de vacunas para criptosporidiosis: Revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v10i6.15540Palabras clave:
Cryptosporidium spp.; Coccicidiosis; Inmunización; Zoonosis.Resumen
Cryptosporidium spp. son parásitos oportunistas con potencial zoonótico transmitidos por la ingestión de alimentos y agua contaminados, la infección consiste en una diarrea severa que conduce a la muerte de lactantes e individuos inmunodeprimidos. En el área veterinaria puede generar pérdidas económicas por muerte de terneros, siendo estos animales una posible fuente de transmisión del parásito. La nitazoxanida y la halofuginona son los únicos medicamentos aprobados para el tratamiento en humanos y terneros, respectivamente, sin embargo, existen restricciones sobre su uso. Todavía no existe una vacuna contra la criptosporidiosis en humanos o animales y su desarrollo es un gran desafío. Nuestro objetivo con el presente trabajo fue escribir una revisión sistemática de la literatura que aborde el avance de los estudios sobre vacunas contra la criptosporidiosis. Se utilizaron las pautas recomendadas para RSL, con la ayuda del software StArt (Estado del arte mediante revisiones sistemáticas). La investigación se realizó en las bases de datos: Lilacs, PubMed, Scielo, Science Direct, Scopus, Embase y Medline. En el 30% de los artículos seleccionados, los terneros fueron el animal de estudio y en el 50% los ratones; El 40% de los estudios se realizaron con vacunas derivadas de proteínas recombinantes y el 30% de la investigación tuvo como objetivo inhibir la entrada del parásito en las células y activar la inmunidad protectora del huésped. Hasta ahora, se ha desarrollado una vacuna sin eficacia probada ni con una relación costo-beneficio óptima. Se han caracterizado muchas dianas antigénicas candidatas para una vacuna, además de dilucidar el mecanismo de inmunogenicidad de Cryptosporidium spp. en el individuo infectado. Sin embargo, se pueden buscar otras dianas antigénicas para una vacuna en estudios futuros.
Citas
Askari, N., Shayan, P., Mokhber-dezfouli, M. R., Ebrahimzadeh, E., Lotfollahzadeh, S., Rostami, A., Amininia, N., & Ragh, M. J. (2016). Evaluation of recombinant P23 protein as a vaccine for passive immunization of newborn calves against Cryptosporidium parvum. Parasite Immunology, 38, 282–289. doi: 10.1111/pim.12317
Avendaño, C., Jenkins, M., Méndez-callejas, G., Oviedo, J., Guzmán, F., Patarroyo, M. A., Sánchez-acedo, C., & Quílez, J., (2018). Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. Vaccine, 36, 45, 6703–6710. doi: 10.1016/j.vaccine.2018.09.044
Bartelt, L. A., Bolick, D. T., Kolling, G. L., Roche, J. K., Zaenker, I. E., Lara, A. M., Noronha, F. J., Cowardin, C. A., Moore, J. H., Turner, J. R., Warren, C. A., Buck, G. A., & Guerrant, R. L., (2016). Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model. PLoS Neglected Tropical Diseases, 10, n. 7, 1–29. doi: 10.1371/journal.pntd.0004820
Cui, Z., Dong, H., Wang, R., Jian, F., Zhang, S., Ning, C., & Zhang, L. (2018). A canine model of experimental infection with Cryptosporidium canis Zhaohui. Experimental Parasitology, 195, 19–23. doi: 10.1016/j.exppara.2018.09.019
Elguero, M. E., Tomazic, M. L., Montes, M. G., Florin-christensen, M., Schnittger, L., & Nusblat, A. D. (2019). Veterinary Parasitology The Cryptosporidium parvum gp60 glycoprotein expressed in the ciliate Tetrahymena thermophila is immunoreactive with sera of calves infected with Cryptosporidium oocysts. Veterinary Parasitology, 271, 45–50. doi: 10.1016/j.vetpar.2019.06.008
Hemphill, A., Müller, N., & Müller, J. (2019). Comparative Pathobiology of the Intestinal Protozoan Parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens, 8, 116. doi: 10.3390/pathogens8030116
Huang, Y., Cao, W., Shi, K., Mi, R., Lu, K., Han, X., & Chen, Z. (2017). Protective efficacy of recombinant Cryptosporidium parvum CpPRP1 sushi domain against C. tyzzeri infection in mice. Parasite Immunology, 39, n. 9, 0–2. doi: 10.1111/pim.12449
Joachim, A., Altreuther, G., Bangoura, B., Charles, S., Daugschies, A., Hinney, B., Lindsay, D. S., Mundt, H.C., Ocak, M., & Sotiraki, S. (2018). W A A V P Guideline for Evaluating the Efficacy of Anticoccidials in Mammals (Pigs, Dogs, Cattle, Sheep). Veterinary Parasitology, 15, 102–119. doi: 10.1016/j.vetpar.2018.02.029
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51, n. 1, 7–15. doi:10.1016/j.infsof.2008.09.009
Kwakye-Nuako, G., Boampong, J. N., Dong, M. K., Obiri-Yeboah, D., Opoku, Y. K., Amoako-Sakyi, D., & Asare, K. K. (2016). Modulation of cyptosporidiosis by CD4 levels in chronic diarrhoea HIV/AIDS individuals visiting Tarkwa Municipal hospital, Ghana. Asian Pacific Journal of Tropical Disease, 6, n. 10, 770–775. doi: 10.1016/S2222-1808(16)61127-1
Lippuner, C., Ramakrishnan, C., Basso, W. U., Schmid, M. W., Okoniewski, M., Smith, N. C., Hässig, M., Deplazes, P., & Hehl, A. B. (2018). RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. International Journal for Parasitology, 48, 413–422. doi: 10.1016/j.ijpara.2017.10.007
Mammeri, M., Chevillot, A., Thomas, M., Polack, B., Julien, C., Marden, J.-P., Auclair, E., Vallée, I., & Tarik, K. A. (2018). Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice. Experimental Parasitology, 194, 1–8. doi: 10.1016/j.exppara.2018.09.003
Mcnair, N. N., Bedi, C., Shayakhmetov, D. M., Arrowood, M. J., & Jan, R. M. (2018). Inflammasome components caspase-1 and adaptor protein apoptosis-associated speck-like proteins are important in resistance to Cryptosporidium parvum. Microbes and Infection, 20, 369–375. doi: 10.1016/j.micinf.2018.04.006
Robinson, G., Elwin, K., & Chalmers, R. M. (2019). Cryptosporidium Diagnostic Assays: Molecular Detection. Cryptosporidium. 11–22. doi: 10.1007/978-1-4939-9748-0_2
Ryan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals - a one health approach to prophylaxis. Parasite. Immunol. doi: 10.1111/pim.12350
Sateriale, A., Slapeta, J., Baptista, R., Engiles, J. B., Gullicksrud, J. A., Hebert, G. T., Brooks, C. F., Kugler, E. M., Kissinger, J. C., Hunter, C. A., & Striepen, B. A. (2019). Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into HostProtective Immunity. Cell Host & Microbe, 26, 135–146. doi: 10.1016/j.chom.2019.05.006
Tomazic, M. L., Rodriguez, A. E., Lombardelli, J., Poklepovich, T., Garro, C., Galarza, R., Tiranti, K., & Schnittger, L. (2018). Identification of novel vaccine candidates against cryptosporidiosis of neonatal bovines by reverse vaccinology. Veterinary Parasitology, 264, 74–78. doi: 10.1016/j.vetpar.2018.11.007
Tosini, F., Ludovisi, A., Tonanzi, D., Amati, M., Cherchi, S., & Pozio, E. (2019). Delivery of SA35 and SA40 peptides in mice enhances humoral and cellular immune responses and confers protection against Cryptosporidium parvum infection. Parasites & Vectors, 15, 1–15. doi: 10.1186/s13071-019-3486-8
Yang, Y., Xue, X., Yang, Y., Chen, X., & Du, A. (2016). Efficacy of a potential DNA vaccine encoding Cryptosporidium baileyi rhomboid protein against homologous challenge in chickens. Veterinary Parasitology, 230, 5–11. doi: 10.1016/j.vetpar.2016.05.024
Zahedi, A., Gofton, A. W., Greay, T., Monis, P., Oskam, C., Ball, A., Bath, A., Watkinson, A., Robertson, I., & Ryan, U. (2018). Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. Science of the Total Environment, 644, 635–648. doi: 10.1016/j.scitotenv.2018.07.024
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Débora Regina Romualdo da Silva; Talita Carolina Bragança de Oliveira; Bárbara Braga Ferreira Marta; Carolina Beatriz Baptista; Maria Cecília Zonetti Bottaro; Katia Denise Saraiva Bresciani
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.