Dispositivos de visión por computador para el rastreo de los movimientos gruesos de las extremidades superiores en la rehabilitación posterior al accidente cerebrovascular
DOI:
https://doi.org/10.33448/rsd-v10i6.16143Palabras clave:
Accidentes cerebrovasculares; Rehabilitación; Miembro superior; Visión por computador; Función Motora Gruesa.Resumen
Los juegos y la realidad virtual son nuevos conceptos aplicados a la rehabilitación de las extremidades superiores tras un ictus. Para llevar a cabo la rehabilitación fisioterapéutica del miembro superior y restaurar las habilidades motoras mediante recursos de realidad virtual es necesario utilizar un rastreador de brazos, que sería la entrada del videojuego. Sin embargo, uno de los principales problemas a la hora de iniciar un proyecto de juego de rehabilitación tras un ictus es la elección del dispositivo de rastreo del movimiento del miembro superior más adecuado. Así, este artículo pretende explorar los dispositivos de rastreo del movimiento grueso del miembro superior más utilizados en la literatura científica. Para llevar a cabo esta investigación, se realizaron búsquedas bibliográficas en inglés hasta diciembre de 2020 en las bases de datos ACM, PubMed e IEEE Xplore. Hemos seleccionado un total de noventa y cinco (95) artículos. En estos estudios, identificamos los dispositivos de movimiento de la extremidad superior más utilizados y los clasificamos en 5 categorías diferentes: RGB-D skeletal tracking, RGB object tracking, IR marker tracking, LeapMotion y RGB markerless body tracking. Encontramos que la mayoría de los estudios (52%) utilizaron el RGB-D skeletal tracking. Además, encontramos quince (15) sistemas o dispositivos de rastreo comerciales diferentes y el más utilizado fue Kinect® (47% de todos los estudios). No obstante, no fue posible generalizar si un dispositivo es mejor que el otro. Aunque la cantidad de investigaciones en esta área ha aumentado significativamente en los últimos años, todavía se necesitan estudios adicionales para cuantificar el potencial del uso de dispositivos de seguimiento del movimiento del miembro superior grueso en la rehabilitación con juegos en el tratamiento posterior al accidente cerebrovascular.
Citas
Adams, R. J., Ellington, A. L., Armstead, K., Sheffield, K., Patrie, J. T., & Diamond, P. T. (2019). Upper Extremity Function Assessment Using a Glove Orthosis and Virtual Reality System. OTJR : Occupation, Participation and Health, 39(2), 81–89. https://doi.org/10.1177/1539449219829862
Adams, R. J., Lichter, M. D., Ellington, A., White, M., Armstead, K., Patrie, J. T., & Diamond, P. T. (2018). Virtual Activities of Daily Living for Recovery of Upper Extremity Motor Function. IEEE Trans. Neural Syst. Rehabil, 26(1), 252–260. https://doi.org/10.1109/TNSRE.2017.2771272
Ahmed, N., Mauad, V. A. Q., Gomez-Rojas, O., Sushea, A., Castro-Tejada, G., Michel, J., Linares, J. M., Pedrosa Salles, L., Candido Santos, L., Shan, M., Nassir, R., Montanez-Valverde, R., Fabiano, R., Danyi, S., Hassan Hosseyni, S., Anand, S., Ahmad, U., Casteleins, W. A., Sanchez, A. T., … Halalau, A. (2020). The Impact of Rehabilitation-oriented Virtual Reality Device in Patients With Ischemic Stroke in the Early Subacute Recovery Phase: Study Protocol for a Phase III, Single-Blinded, Randomized, Controlled Clinical Trial. Journal of Central Nervous System Disease, 12, 1179573519899471. https://doi.org/10.1177/1179573519899471
Alaerts, K., Nackaerts, E., Meyns, P., Swinnen, S., & Wenderoth, N. (2011). Action and Emotion Recognition from Point Light Displays: An Investigation of Gender Differences. PLoS One, 6. https://doi.org/10.1371/journal.pone.0020989
Amorim, P., Santos, B. S., Dias, P., Silva, S., & Martins, H. (2020). Serious Games for Stroke Telerehabilitaton of Upper Limb - a Review for Future Research. International Journal of Telerehabilitation, 12(2), 1–12. https://doi.org/10.5195/ijt.2020.6326
Askin, A., Atar, E., Kocyigit, H., & Tosun, A. (2018). Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Somatosensory & Motor Research, 35(1), 25–32. https://doi.org/10.1080/08990220.2018.1444599
Assis, G. A. de, Correa, A. G. D., Martins, M. B. R., Pedrozo, W. G., & Lopes, R. de D. (2016). An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study. Disability and Rehabilitation. Assistive Technology, 11(6), 521–528. https://doi.org/10.3109/17483107.2014.979330
Aung, Y. M., & Al-Jumaily, A. (2011). Rehabilitation exercise with real-time muscle simulation based EMG and AR. 2011 11th International Conference on Hybrid Intelligent Systems (HIS), 641–646.
Ballester, B Rubio, Badia, S. B. i, & Verschure, P. F. M. J. (2012). Including Social Interaction in Stroke VR-Based Motor Rehabilitation Enhances Performance: A Pilot Study. Presence, 21(4), 490–501.
Ballester, Belen Rubio, Maier, M., San Segundo Mozo, R. M., Castaneda, V., Duff, A., & M J Verschure, P. F. (2016). Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. Journal of Neuroengineering and Rehabilitation, 13(1), 74. https://doi.org/10.1186/s12984-016-0178-x
Ballester, Belen Rubio, Nirme, J., Duarte, E., Cuxart, A., Rodriguez, S., Verschure, P., & Duff, A. (2015). The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. Journal of Neuroengineering and Rehabilitation, 12, 50. https://doi.org/10.1186/s12984-015-0039-z
Baniña, M. C., Mullick, A. A., & Levin, M. F. (2013). Deficits in obstacle avoidance behaviour in individuals with good arm recovery after stroke. 2013 International Conference on Virtual Rehabilitation (ICVR), 190–191.
Bank, P. J. M., Cidota, M. A., Ouwehand, P. E. W., & Lukosch, S. G. (2018). Patient-Tailored Augmented Reality Games for Assessing Upper Extremity Motor Impairments in Parkinson’s Disease and Stroke. Journal of Medical Systems, 42(12), 246. https://doi.org/10.1007/s10916-018-1100-9
Baran, M., Lehrer, N., Duff, M., Venkataraman, V., Turaga, P., Ingalls, T., Rymer, W. Z., Wolf, S. L., & Rikakis, T. (2015). Interdisciplinary concepts for design and implementation of mixed reality interactive neurorehabilitation systems for stroke. Physical Therapy, 95(3), 449–460. https://doi.org/10.2522/ptj.20130581
Bertani, R., Melegari, C., Cola, M. C. De, & Bramanti, A. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci, 1–9. https://doi.org/10.1007/s10072-017-2995-5
Boone, A. E., Wolf, T. J., & Engsberg, J. R. (2019). Combining Virtual Reality Motor Rehabilitation With Cognitive Strategy Use in Chronic Stroke. The American Journal of Occupational Therapy : Official Publication of the American Occupational Therapy Association, 73(4), 7304345020p1-7304345020p9. https://doi.org/10.5014/ajot.2019.030130
Borstad, A. L., Crawfis, R., Phillips, K., Lowes, L. P., Maung, D., McPherson, R., Siles, A., Worthen-Chaudhari, L., & Gauthier, L. V. (2018). In-Home Delivery of Constraint-Induced Movement Therapy via Virtual Reality Gaming. Journal of Patient-Centered Research and Reviews, 5(1), 6–17. https://doi.org/10.17294/2330-0698.1550
Brokaw, E. B., Eckel, E., & Brewer, B. R. (2015). Usability evaluation of a kinematics focused Kinect therapy program for individuals with stroke. Technology and Health Care : Official Journal of the European Society for Engineering and Medicine, 23(2), 143–151. https://doi.org/10.3233/THC-140880
Brunnhuber, K., Chalmers, I., Chalkidou, K., & Clarke, M. (2006). How to formulate research recommendations. BMJ, 333(7572), 804–806. https://doi.org/10.1136/bmj.38987.492014.94
Cameirao, M. S., Faria, A. L., Paulino, T., Alves, J., & Bermudez I Badia, S. (2016). The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients. Journal of Neuroengineering and Rehabilitation, 13(1), 70. https://doi.org/10.1186/s12984-016-0175-0
Cameirao, M. S., Smailagic, A., Miao, G., & Siewiorek, D. P. (2016). Coaching or gaming? Implications of strategy choice for home based stroke rehabilitation. Journal of Neuroengineering and Rehabilitation, 13, 18. https://doi.org/10.1186/s12984-016-0127-8
Cargnin, D. J., Cordeiro d’Ornellas, M., & Cervi Prado, A. L. (2015). A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training. Studies in Health Technology and Informatics, 216, 348–352.
Castano, J. B., Escobar, J. D. H., Cardona, J. E. M., & Herrera, J. F. L. (2014). Shoulder flexion rehabilitation in patients with monoparesia using an exergame. 2014 IEEE 3nd International Conference on Serious Games and Applications for Health (SeGAH), 1–5.
Chen, C., Lee, S., Wang, W., Chen, H., Liu, J., Huang, Y., & Su, M. (2017). The changes of improvement-related motor kinetics after virtual reality based rehabilitation. 2017 International Conference on Applied System Innovation (ICASI), 683–685.
Chen, X., Ma, C., Xu, S., & He, J. (2007). Virtual Reality Based on Stereotypical RUPERT for Stroke Functional Rehabilitative Training Scenarios. 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007), 639–644.
Choi, H.-S., Shin, W.-S., & Bang, D.-H. (2019). Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 25, 3271–3278. https://doi.org/10.12659/MSM.914095
Cidota, M. A., Bank, P. J. M., & Lukosch, S. G. (2019). Design Recommendations for Augmented Reality Games for Objective Assessment of Upper Extremity Motor Dysfunction. IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1430–1438. https://doi.org/10.1109/VR.2019.8797729
da Silva Cameirao, M., Bermudez I Badia, S., Duarte, E., & Verschure, P. F. M. J. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative Neurology and Neuroscience, 29(5), 287–298. https://doi.org/10.3233/RNN-2011-0599
Demers, M, Kong, D. C. C., & Levin, M. F. (2017). Acceptability of using a Kinect-based virtual reality intervention to remediate arm motor impairments in subacute stroke. 2017 International Conference on Virtual Rehabilitation (ICVR), 1–2.
Demers, Marika, Chan Chun Kong, D., & Levin, M. F. (2019). Feasibility of incorporating functionally relevant virtual rehabilitation in sub-acute stroke care: perception of patients and clinicians. Disability and Rehabilitation. Assistive Technology, 14(4), 361–367. https://doi.org/10.1080/17483107.2018.1449019
Dias, J., Veloso, A. I., & Ribeiro, T. (2019). “A Priest in the Air.” 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 1–7.
Dias, P., Silva, R., Amorim, P., Laíns, J., Roque, E., Serôdio, I., Pereira, F., & Santos, B. S. (2019). Using Virtual Reality to Increase Motivation in Poststroke Rehabilitation. IEEE Computer Graphics and Applications, 39(1), 64–70.
Ding, W. L., Zheng, Y. Z., Su, Y. P., & Li, X. L. (2018). Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study. Journal of Back and Musculoskeletal Rehabilitation, 31(4), 611–621. https://doi.org/10.3233/BMR-140203
Duff, M., Chen, Y., Attygalle, S., Sundaram, H., & Rikakis, T. (2010). Mixed reality rehabilitation for stroke survivors promotes generalized motor improvements (pp. 5899–5902). https://doi.org/10.1109/IEMBS.2010.5627537
Duff, M, Chen, Y., Attygalle, S., Herman, J., Sundaram, H., Qian, G., He, J., & Rikakis, T. (2010). An Adaptive Mixed Reality Training System for Stroke Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(5), 531–541.
Duff, Margaret, Chen, Y., Cheng, L., Liu, S.-M., Blake, P., Wolf, S. L., & Rikakis, T. (2013). Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabilitation and Neural Repair, 27(4), 306–315. https://doi.org/10.1177/1545968312465195
Dukes, P. S., Hayes, A., Hodges, L. F., & Woodbury, M. (2013). Punching ducks for post-stroke neurorehabilitation: System design and initial exploratory feasibility study. 2013 IEEE Symposium on 3D User Interfaces (3DUI), 47–54.
Faith, A., Chen, Y., Rikakis, T., & Iasemidis, L. (2011). Interactive rehabilitation and dynamical analysis of scalp EEG. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1387–1390.
Faria, A. L., Cameirão, M. S., Paulino, T., & Badia, S. B. (2015). The benefits of emotional stimuli in a virtual reality cognitive and motor rehabilitation task: Assessing the impact of positive, negative and neutral stimuli with stroke patients. 2015 International Conference on Virtual Rehabilitation (ICVR), 65–71. https://doi.org/10.1109/ICVR.2015.7358584
Faria, Ana L, Cameirao, M. S., Couras, J. F., Aguiar, J. R. O., Costa, G. M., & Bermudez I Badia, S. (2018). Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study. Frontiers in Psychology, 9, 854. https://doi.org/10.3389/fpsyg.2018.00854
Funabashi, A. M. M., Aranha, R. V, Silva, T. D., Monteiro, C. B. M., Silva, W. S., & Nunes, F. L. S. (2017). AGaR: A VR Serious Game to Support the Recovery of Post-Stroke Patients. 2017 19th Symposium on Virtual and Augmented Reality (SVR), 279–288.
Gauthier, L. V, Kane, C., Borstad, A., Strahl, N., Uswatte, G., Taub, E., Morris, D., Hall, A., Arakelian, M., & Mark, V. (2017). Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurology, 17(1), 109. https://doi.org/10.1186/s12883-017-0888-0
George, S. H., Rafiei, M. H., Borstad, A., Adeli, H., & Gauthier, L. V. (2017). Gross Motor Ability Predicts Response to Upper Extremity Rehabilitation in Chronic Stroke. Behav Brain Res. https://doi.org/10.1016/j.bbr.2017.07.002
Givon Schaham, N., Zeilig, G., Weingarden, H., & Rand, D. (2018). Game analysis and clinical use of the Xbox-Kinect for stroke rehabilitation. International Journal of Rehabilitation Research. Internationale Zeitschrift Fur Rehabilitationsforschung. Revue Internationale de Recherches de Readaptation, 41(4), 323–330. https://doi.org/10.1097/MRR.0000000000000302
Gutiérrez-Celaya, J. A., Leder, R., Carrillo, R., Hawayek, A., Hernández, J., & Sucar, E. (2011). fMRI-based inverse analysis of stroke patients’ motor functions. 2011 Pan American Health Care Exchanges, 1–6.
H. Carlsson, G. Gard, and C. B. (2018). Upper-limb sensory impairments after stroke: Self-reported experiences of daily life and rehabilitation. J. Rehabil. Med., 50(1), 45–51. https://doi.org/10.2340/16501977-2282
Hoermann, S., Santos, L. F. D., Morkisch, N., Jettkowski, K., Sillis, M., Cutfield, N. J., Schmidt, H., Hale, L., Krüger, J., Regenbrecht, H., & Dohle, C. (2015). Computerized mirror therapy with augmented reflection technology for stroke rehabilitation: A feasibility study in a rehabilitation center. 2015 International Conference on Virtual Rehabilitation (ICVR), 199–206.
Hondori, H. M., Khademi, M., Dodakian, L., McKenzie, A., Lopes, C. V, & Cramer, S. C. (2016). Choice of Human-Computer Interaction Mode in Stroke Rehabilitation. Neurorehabil. Neural Repair, 30(3), 258–265. https://doi.org/10.1177/1545968315593805
House, G., Burdea, G., Polistico, K., Roll, D., Kim, J., Grampurohit, N., Damiani, F., Keeler, S., Hundal, J., & Pollack, S. (2016). Integrative rehabilitation of residents chronic post-stroke in skilled nursing facilities: the design and evaluation of the BrightArm Duo. Disability and Rehabilitation. Assistive Technology, 11(8), 683–694. https://doi.org/10.3109/17483107.2015.1068384
Hsiao, S.-W., Lee, C.-H., Yang, M.-H., & Chen, R.-Q. (2017). User interface based on natural interaction design for seniors. Comput. Human Behav, 75. https://doi.org/10.1016/j.chb.2017.05.011
Huang, L., & Chen, M. (2016). The effectiveness of gardening game design for the upper extremity function of stroke patients. 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), 110–112.
Hung, C., Croft, E. A., & Loos, H. F. M. Van der. (2015). A wearable vibrotactile device for upper-limb bilateral motion training in stroke rehabilitation: A case study. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3480–3483.
Ikbali Afsar, S., Mirzayev, I., Umit Yemisci, O., & Cosar Saracgil, S. N. (2018). Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial. Journal of Stroke and Cerebrovascular Diseases : The Official Journal of National Stroke Association, 27(12), 3473–3478. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007
Jayasree-Krishnan, V., Gamdha, D., Goldberg, B. S., Ghosh, S., Raghavan, P., & Kapila, V. (2019). A Novel Task-Specific Upper-Extremity Rehabilitation System with Interactive Game-Based Interface for Stroke Patients. 2019 International Symposium on Medical Robotics (ISMR), 1–7.
Ji, E.-K., & Lee, S.-H. (2016). Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: a preliminary study. Journal of Physical Therapy Science, 28(11), 3168–3172. https://doi.org/10.1589/jpts.28.3168
Johnson, L., Bird, M.-L., Muthalib, M., & Teo, W.-P. (2018). Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: a randomised controlled trial protocol. BMJ Open, 8(1), e018388. https://doi.org/10.1136/bmjopen-2017-018388
Kairy, D., Veras, M., Archambault, P., Hernandez, A., Higgins, J., Levin, M. F., Poissant, L., Raz, A., & Kaizer, F. (2016). Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient’s home: study protocol of a randomized clinical trial. Contemporary Clinical Trials, 47, 49–53. https://doi.org/10.1016/j.cct.2015.12.006
Karbasi, M., Bilal, S., Aghababaeyan, R., Rad, A. E., Bhatti, Z., & Shah, A. (2016). Analysis and enhancement of the denoising depth data using kinect through iterative technique. J. Teknol., 78. https://doi.org/10.11113/jt.v78.5348
Kato, N., Tanaka, T., Sugihara, S., Shimizu, K., & Kudo, N. (2016). Trial operation of a cloud service-based three-dimensional virtual reality tele-rehabilitation system for stroke patients. 2016 11th International Conference on Computer Science & Education (ICCSE), 285–290.
Kelly, K. M., Borstad, A. L., Kline, D., & Gauthier, L. V. (2018). Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement. Topics in Stroke Rehabilitation, 25(7), 467–474. https://doi.org/10.1080/10749357.2018.1481605
Kim, B. R., Chun, M. H., Kim, L. S., & Park, J. Y. (2011). Effect of virtual reality on cognition in stroke patients. Annals of Rehabilitation Medicine, 35(4), 450–459. https://doi.org/10.5535/arm.2011.35.4.450
Kizony, R., Weiss, P. L., Feldman, Y., Shani, M., Elion, O., Kizony, R., Weiss, P. L., Kizony, R., Harel, S., & Baum-Cohen, I. (2013). Evaluation of a Tele-Health System for upper extremity stroke rehabilitation. 2013 International Conference on Virtual Rehabilitation (ICVR), 80–86.
Kutlu, M., Freeman, C. T., Hallewell, E., Hughes, A.-M., & Laila, D. S. (2016). Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations. Medical Engineering & Physics, 38(4), 366–379. https://doi.org/10.1016/j.medengphy.2016.01.004
Kutlu, M., Freeman, C. T., Hallewell, E., Hughes, A., & Laila, D. S. (2015). FES-based upper-limb stroke rehabilitation with advanced sensing and control. 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 253–258.
Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair, 111–121. https://doi.org/10.1177/1545968307305457
Kwon, J.-S., Park, M.-J., Yoon, I.-J., & Park, S.-H. (2012). Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation, 31(4), 379–385. https://doi.org/10.3233/NRE-2012-00807
Laffont, I., Froger, J., Jourdan, C., & Bakhti, K. (2019). Rehabilitation of the upper arm early after stroke: video games versus conventional rehabilitation. A randomized controlled trial. Annals of Physical and Rehabilitation Medicine. https://doi.org/https://doi.org/doi:10.1016/j.rehab.2019.10.009
Lauterbach, S. A., Foreman, M. H., & Engsberg, J. R. (2013). Computer Games as Therapy for Persons with Stroke. Games for Health Journal, 2(1), 24–28. https://doi.org/10.1089/g4h.2012.0032
Lee, G. (2013). Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. Journal of Physical Therapy Science, 25(5), 595–597. https://doi.org/10.1589/jpts.25.595
Lee, K.-H. (2015). Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1. J. Phys. Ther. Sci., 27(6), 1637–1640. https://doi.org/10.1589/jpts.27.1637
Lee, M., Pyun, S.-B., Chung, J., Kim, J., Eun, S.-D., & Yoon, B. (2016). A Further Step to Develop Patient-Friendly Implementation Strategies for Virtual Reality-Based Rehabilitation in Patients With Acute Stroke. Physical Therapy, 96(10), 1554–1564. https://doi.org/10.2522/ptj.20150271
Lee, S. J., & Chun, M. H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Archives of Physical Medicine and Rehabilitation, 95(3), 431–438. https://doi.org/10.1016/j.apmr.2013.10.027
Levin, M. F., Snir, O., Liebermann, D. G., Weingarden, H., & Weiss, P. L. (2012). Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurology and Therapy, 1(1), 3. https://doi.org/10.1007/s40120-012-0003-9
Lin, J., Kelleher, C. L., & Engsberg, J. R. (2013). Developing Home-Based Virtual Reality Therapy Interventions. Games for Health Journal, 2(1), 34–38. https://doi.org/10.1089/g4h.2012.0033
McDermott, E. J., & Himmelbach, M. (2019). Effects of arm weight and target height on hand selection: A low-cost virtual reality paradigm. PloS One, 14(6), e0207326. https://doi.org/10.1371/journal.pone.0207326
Microsoft. (n.d.). Azure Kinect DK. Retrieved February 1, 2021, from https://azure.microsoft.com/pt-br/services/kinect-dk/
Mobini, A., Behzadipour, S., & Saadat, M. (2015). Test-retest reliability of Kinect’s measurements for the evaluation of upper body recovery of stroke patients. Biomedical Engineering Online, 14, 75. https://doi.org/10.1186/s12938-015-0070-0
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Mphil, C. A. A.-L., Rechy-Ramirez, E. J., Hu, H., Rios-Figueroa, H. V., & Marin-Hernandez, A. (201 C.E.). Interaction Modalities Used on Serious Games for Upper Limb Rehabilitation: A Systematic Review. GAMES FOR HEALTH JOURNAL, 8(5), 1–13. https://doi.org/10.1089/g4h.2018.0129
Norouzi-Gheidari, N, Levin, M. F., Fung, J., & Archambault, P. (2013). Interactive virtual reality game-based rehabilitation for stroke patients. 2013 International Conference on Virtual Rehabilitation (ICVR), 220–221.
Norouzi-Gheidari, Nahid, Hernandez, A., Archambault, P. S., Higgins, J., Poissant, L., & Kairy, D. (2019). Feasibility, Safety and Efficacy of a Virtual Reality Exergame System to Supplement Upper Extremity Rehabilitation Post-Stroke: A Pilot Randomized Clinical Trial and Proof of Principle. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010113
Ogun, M. N., Kurul, R., Yasar, M. F., Turkoglu, S. A., Avci, S., & Yildiz, N. (2019). Effect of Leap Motion-based 3D Immersive Virtual Reality Usage on Upper Extremity Function in Ischemic Stroke Patients. Arquivos de Neuro-Psiquiatria, 77(10), 681–688. https://doi.org/10.1590/0004-282X20190129
Prange, G., Krabben, T., Molier, B., Kooij, H. van der, & Jannink, M. (2018). A low-tech virtual reality application for training of upper extremity motor function in neurorehabilitation. 2008 Virtual Rehabilitation. https://doi.org/10.1109/ICVR.2008.4625113
Proffitt, R. M., Henderson, W., Scholl, S., & Nettleton, M. (2018). Lee Silverman Voice Treatment BIG((R)) for a Person With Stroke. The American Journal of Occupational Therapy : Official Publication of the American Occupational Therapy Association, 72(5), 7205210010p1-7205210010p6. https://doi.org/10.5014/ajot.2018.028217
Qian, Q., Hu1, X., Lai, Q., Ng, S. C., Zheng, Y., & Poon, W. (2017). Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm. Front. Neurol. https://doi.org/https://doi.org/10.3389/fneur.2017.00447
Rabin, B., Burdea, G., Hundal, J., Roll, D., & Damiani, F. (2011). Integrative motor, emotive and cognitive therapy for elderly patients chronic post-stroke A feasibility study of the BrightArmTM rehabilitation system. 2011 International Conference on Virtual Rehabilitation, 1–8.
Rand, D, Katz, N., & Weiss, P. L. (2009). Intervention using the VMall for improving motor and functional ability of the upper extremity in post stroke participants. European Journal of Physical and Rehabilitation Medicine, 45(1), 113–121.
Rand, Debbie, Weingarden, H., Weiss, R., Yacoby, A., Reif, S., Malka, R., Shiller, D. A., & Zeilig, G. (2017). Self-training to improve UE function at the chronic stage post-stroke: a pilot randomized controlled trial. Disability and Rehabilitation, 39(15), 1541–1548. https://doi.org/10.1080/09638288.2016.1239766
Reinthal, A., Szirony, K., Clark, C., Swiers, J., Kellicker, M., & Linder, S. (2012). ENGAGE: Guided Activity-Based Gaming in Neurorehabilitation after Stroke: A Pilot Study. Stroke Res. Treat. https://doi.org/10.1155/2012/784232
Rosin, P. L., Lai, Y.-K., Shao, L., & Liu, Y. (2019). RGB-D Image Analysis and Processing.
Roy, A. K., Soni, Y., & Dubey, S. (2013). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), 298–304.
Sampson, M., Shau, Y.-W., & King, M. J. (2012). Bilateral upper limb trainer with virtual reality for post-stroke rehabilitation: case series report. Disability and Rehabilitation. Assistive Technology, 7(1), 55–62. https://doi.org/10.3109/17483107.2011.562959
Saposnik, G. (2016). Virtual reality in stroke rehabilitation. In B. Ovbiagele (Ed.), Ischemic stroke therapeutics (pp. 225–233). 225–233. https://doi.org/doi.org/10.1007/978-3-319-17750-2_22
Schüler, T., Drehlmann, S., Kane, F., & Piekartz, H. von. (2013). Abstract virtual environment for motor rehabilitation of stroke patients with upper limb dysfunction. A pilot study. 2013 International Conference on Virtual Rehabilitation (ICVR), 184–185.
Seyedebrahimi, A., Khosrowabadi, R., & Hondori, H. M. (2019). Brain Mechanism in the Human-Computer Interaction Modes Leading to Different Motor Performance. 2019 27th Iranian Conference on Electrical Engineering (ICEE), 1802–1806.
Shin, J.-H., Bog Park, S., & Ho Jang, S. (2015). Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Computers in Biology and Medicine, 63, 92–98. https://doi.org/10.1016/j.compbiomed.2015.03.011
Shin, J.-H., Ryu, H., & Jang, S. H. (2014). A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. Journal of Neuroengineering and Rehabilitation, 11, 32. https://doi.org/10.1186/1743-0003-11-32
Shiri, S., Feintuch, U., Lorber-Haddad, A., Moreh, E., Twito, D., Tuchner-Arieli, M., & Meiner, Z. (2012). Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility. Topics in Stroke Rehabilitation, 19(4), 277–286. https://doi.org/10.1310/tsr1904-277
Sin, H., & Lee, G. (2013). Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. American Journal of Physical Medicine & Rehabilitation, 92(10), 871–880. https://doi.org/10.1097/PHM.0b013e3182a38e40
Subramanian, S., Knaut, L. A., Beaudoin, C., McFadyen, B. J., Feldman, A. G., & Levin, M. F. (2006). Virtual Reality Environments for Rehabilitation of the Upper Limb after Stroke. 2006 International Workshop on Virtual Rehabilitation, 18–23.
Sucar, L. E., Leder, R., Hernandez, J., Sanchez, I., & Azcarate, G. (2009). Clinical evaluation of a low-cost alternative for stroke rehabilitation. 2009 IEEE International Conference on Rehabilitation Robotics, 863–866.
Sucar, L. E., Orihuela-Espina, F., Velazquez, R. L., Reinkensmeyer, D. J., Leder, R., & Hernández-Franco, J. (2014). Gesture Therapy: An Upper Limb Virtual Reality-Based Motor Rehabilitation Platform. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 634–643.
Thielbar, K. O., Triandafilou, K. M., Barry, A. J., Yuan, N., Nishimoto, A., Johnson, J., Stoykov, M. E., Tsoupikova, D., & Kamper, D. G. (2020). Home-based Upper Extremity Stroke Therapy Using a Multiuser Virtual Reality Environment: A Randomized Trial. Archives of Physical Medicine and Rehabilitation, 101(2), 196–203. https://doi.org/10.1016/j.apmr.2019.10.182
Vanbellingen, T., Filius, S. J., Nyffeler, T., & van Wegen, E. E. H. (2017). Usability of Videogame-Based Dexterity Training in the Early Rehabilitation Phase of Stroke Patients: A Pilot Study. Frontiers in Neurology, 8, 654. https://doi.org/10.3389/fneur.2017.00654
Virani;, S. S., Alonso;, A., Benjamin;, E. J., Bittencourt;, M. S., Callaway;, C. W., Carson;, A. P., Chamberlain;, A. M., Chang;, A. R., & Cheng;, S. (2020). Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart AssociationNo Title. Circulation1, 141(9), e139–e596. https://doi.org/10.1161/CIR.0000000000000757
Vourvopoulos, A., Faria, A. L., Cameirão, M. S., & Badia, S. B. i. (2013). RehabNet: A distributed architecture for motor and cognitive neuro-rehabilitation. 2013 IEEE 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), 454–459.
Wairagkar, M., McCrindle, R., Robson, H., Meteyard, L., Sperrin, M., Smith, A., & Pugh, M. (2017). MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect. Methods of Information in Medicine, 56(2), 127–137. https://doi.org/10.3414/ME16-02-0015
Wang, Q., Markopoulos, P., Yu, B., Chen, W., & Timmermans, A. (2017). Interactive wearable systems for upper body rehabilitation: a systematic review. J. Neuroeng. Rehabil, 14(1), 1–20. https://doi.org/10.1186/s12984-017-0229-y
WSO. (2021). World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. https://www.world-stroke.org/assets/downloads/WSO_Fact-sheet_15.01.2020.pdf
Yang, Z., Rafiei, M. H., Hall, A., Thomas, C., Midtlien, H. A., Hasselbach, A., Adeli, H., & Gauthier, L. V. (2018). A Novel Methodology for Extracting and Evaluating Therapeutic Movements in Game-Based Motion Capture Rehabilitation Systems. Journal of Medical Systems, 42(12), 255. https://doi.org/10.1007/s10916-018-1113-4
Yavuzer, G., Senel, A., Atay, M. B., & Stam, H. J. (2008). “‘Playstation eyetoy games’” improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. European Journal of Physical and Rehabilitation Medicine, 44(3), 237–244.
Yeh, S., Lee, S., Chan, R., & Chen, S. (2019). A Kinect-Based System for Stroke Rehabilitation. 2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media), 192–198.
Zhang, S., Wang, C., & Chan, S. C. (2013). A new high resolution depth map estimation system using stereo vision and depth sensing device. 2013 IEEE 9th International Colloquium on Signal Processing and Its Applications, 49–53. https://doi.org/10.1109/CSPA.2013.6530012
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Júlia Tannús de Souza; Eduardo Lázaro Martins Naves; Angela Abreu Rosa de Sá
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.