Usos potenciales de los aceites esenciales en la remediación ambiental: Una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i7.16146

Palabras clave:

Fitorremediación; Biorremediación; Plantas aromáticas; Eucalipto; Melaleuca.

Resumen

Actualmente, los usos potenciales de los aceites esenciales en contextos de áreas que han sufrido procesos de remediación ambiental son poco conocidos. Este trabajo tuvo como objetivo realizar una revisión sistemática sobre los usos potenciales de los aceites esenciales con aplicación en situaciones de remediación ambiental. La búsqueda sistemática se realizó en tres bases de datos (Web of Science, PubMed y Scielo) utilizando descriptores y operadores booleanos (“AND”, “OR”, “NOT”). Todos los resultados seleccionados fueron exportados de las bases de datos para su posterior análisis en el software gratuito VOSviewer, construyendo las redes bibliométricas, el mapeo bibliométrico y la representación gráfica de los mapas. El mapa de visualización general de las redes de co-ocurrencia de términos indicó de 7 a 19 grupos con palabras clave. Los aceites esenciales de Eucalipto, Limón, Limoncillo, Melaleuca, Clavo y Lavanda se destacan como los más utilizados en las investigaciones analizadas. Los enfoques más específicos sobre remediación ambiental se basaron en el análisis de plantas aromáticas para remediar ambientes impactados por metales, destacando también el uso de aceites esenciales en estudios con insecticidas / control de plagas (24%), antimicrobianos contra patógenos ambientales (20%), biorremediación fúngica (20%) y fitorremediación en general (17%). Las plantas aromáticas (de las familias Poaceae, Lamiaceae, Asteraceae y Geraniaceae) se utilizaron en la investigación sobre la remediación de sitios contaminados porque actúan como potenciales fitoestabilizadores, hiperacumuladores, biomonitores y metalofitos facultativos. Estos datos indican el potencial de los aceites esenciales (y plantas aromáticas) en los procesos de remediación ambiental, indicando su uso en situaciones donde hay áreas que necesitan ser remediadas y requieren una intervención inmediata.

Citas

Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39.

Affonso, R. S., Rennó, M. N., Slana, G. B., & Franca, T. C. (2012). Aspectos químicos e biológicos do óleo essencial de cravo da índia. Revista Virtual de Química, 4(2), 146-161.

Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L., & Coats, J. R. (2005). Phytoremediation—an overview. Critical Reviews in Plant Sciences, 24(2), 109-122.

Bahmani, M., & Schmidt, O. (2018). Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas. Ciencia y tecnología, 20(3), 325-332.

Bayala, B., Bassole, I. H. N., Gnoula, C., Nebie, R., Yonli, A., Morel, L., ... & Simpore, J. (2014). Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS one, 9(3), e92122.

Biondi, C. M., Nascimento, C. W. A. D., Fabricio Neta, A. D. B., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35(3), 1057-1066.

Bizzo, H. R., Hovell, A. M. C., & Rezende, C. M. (2009). Óleos essenciais no Brasil: aspectos gerais, desenvolvimento e perspectivas. Química Nova, 32(3), 588-594.

Bouyahya, A., Jamal, A., Edaoudi, F., Et-Touys, A., Bakri, Y., & Dakka, N. (2016). Origanum compactum Benth: a review on phytochemistry and pharmacological properties. Medicinal and Aromatic Plants, 5(4), 1-6.

BRASIL. Ministério da Saúde. Vigilância em Saúde (2014). Vigisolo. Dados e Acompanhamento das Populações. Brasília: Ministério da Saúde. Disponível em: <http://portalms.saude.gov.br/vigilancia-em-saude/vigilancia-ambiental/vigipeq/vigisolo/dados-e-acompanhamento-das-populacoes>. Acesso em: 22/03/2021.

Brito, G. C. B., & Vasconcelos, F. C. W. (2012). A gestão de áreas contaminadas em Minas Gerais: o licenciamento como instrumento preventivo. Revista de Gestão Social e Ambiental-RGSA, 6(2), 19-32.

Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews, 19(1), 50-62.

Castro, R. D. D., & Lima, E. D. O. (2010). Atividade antifúngica in vitro do óleo essencial de Eucalyptus globulus L. sobre Candida spp. Revista de Odontologia UNESP, 179-184.

Chagas, A. C. D. S., Passos, W. M., Prates, H. T., Leite, R. C., Furlong, J., & Fortes, I. C. P. (2002). Efeito acaricida de óleos essenciais e concentrados emulsionáveis de Eucalyptus spp em Boophilus microplus. Brazilian Journal of Veterinary Research and Animal Science, 39(5), 247-253.

Contrucci, B. A., Silva, R., Junior, R. A., & Kozusny-Andreani, D. I. (2019). Efeito de óleos essenciais sobre bactérias gram-negativas isoladas de alimentos. Ensaios em Ciências Biológicas, Agrárias e da Saúde, 23(3), 180-184.

Craveiro, A. A., & Queiroz, D. C. (1993). Óleos essenciais e química fina. Química nova, 16(3), 224-228.

Danh, L. T., Truong, P., Mammucari, R., & Foster, N. (2011). Effect of calcium on growth performance and essential oil of vetiver grass (Chrysopogon zizanioides) grown on lead contaminated soils. International journal of phytoremediation, 13(sup1), 154-165.

EEA (European Environment Agency). A decade of industrial pollution data. 2019. Disponível em: Environmental pressures of heavy metal releases from Europe's industry — European Environment Agency (europa.eu) Acesso em 30/03/2021.

Elallem, K. A., Sobeh, M., Boularbah, A., & Yasri, A. (2020). Chemically degraded soil rehabilitation process using medicinal and aromatic plants. Environmental Science and Pollution Research, 1-21.

Ferreira, R. M., Lofrano, F. C., & Morita, D. M. (2020). Remediação de áreas contaminadas: uma avaliação crítica da legislação brasileira. Engenharia Sanitaria e Ambiental, 25(1), 115-125.

Gonçalves Jr, A. C. (2013). Descontaminação e monitoramento de águas e solos na região amazônica utilizando materiais adsorventes alternativos, visando remoção de metais pesados tóxicos e pesticidas. Inclusão Social, 6(2).

Jain, S., Khare, P., Mishra, D., Shanker, K., Singh, P., Singh, R. P., ... & Baruah, B. P. (2020). Biochar aided aromatic grass [Cymbopogon martini (Roxb.) Wats.] vegetation: A sustainable method for stabilization of highly acidic mine waste. Journal of Hazardous Materials, 390, 121799.

Jiménez-Reyes, M. F., Carrasco, H., Olea, A. F., & Silva-Moreno, E. (2019). Natural compounds: A sustainable alternative to the phytopathogens control. Journal of the Chilean Chemical Society, 64(2), 4459-4465.

Júnior, D. G., Paschoalin, L. F. C., de Oliveira, A. P., & Botezelli, L. Barreiras à implementação da remediação ambiental no Brasil: aspectos gerais relacionados a minas de urânio. Research, Society and Development, 10(1), e19310110806-e19310110806.

Knaak, N., & Fiuza, L. M. (2010). Potencial dos óleos essenciais de plantas no controle de insetos e microrganismos. Neotropical Biology & Conservation, 5(2).

Koul, O., Walia, S., & Dhaliwal, G. S. (2008). Essential oils as green pesticides: potential and constraints. Biopesticides international, 4(1), 63-84.

Machado, B. F. M. T., & Junior, A. F. (2011). Óleos essenciais: aspectos gerais e usos em terapias naturais. Cadernos Acadêmicos, 3(2), 105-127.

Marques, M., Aguiar, C. R. C., & Silva, J. J. L. S. D. (2011). Desafios técnicos e barreiras sociais, econômicas e regulatórias na fitorremediação de solos contaminados. Revista Brasileira de Ciência do Solo, 35(1), 1-11.

Martins, G. D. S. O., Zago, H. B., Costa, A. V., Araujo Junior, L. M. D., & Carvalho, J. R. D. (2017). Chemical composition and toxicity of Citrus essential oils on Dysmicoccus brevipes (Hemiptera: Pseudococcidae). Revista Caatinga, 30(3), 811-817.

Mikola, T. V. Z., Potenza, M. R., Reis, F. C., Silva, V. C. D., Sato, M. E., & Sakita, M. N. (2017). Evaluation of essential oils of Eucalyptus spp. for the control of the subterranean termite Coptotermes gestroi (Wasman) 1. Revista Árvore, 41(2).

MMA. Ministério do Meio Ambiente. Programa nacional de recuperação de áreas contaminadas: agenda nacional de qualidade ambiental urbana [livro eletrônico] Brasília: MMA 2020.

Najem, M., Bammou, M., Bachiri, L., Bouiamrine, E. H., Ibijbijen, J., & Nassiri, L. (2020). Ruta chalepensis L. Essential Oil Has a Biological Potential for a Natural Fight against the Pest of Stored Foodstuffs: Tribolium castaneum Herbst. Evidence-Based Complementary and Alternative Medicine, 2020, 1-11.

Okoh, O. O., Sadimenko, A. P., & Afolayan, A. J. (2010). Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry, 120(1), 308-312.

Pandey, J., Chand, S., Pandey, S., & Patra, D. D. (2015). Palmarosa [Cymbopogon martinii (Roxb.) Wats.] as a putative crop for phytoremediation, in tannery sludge polluted soil. Ecotoxicology and environmental safety, 122, 296-302.

Pandey, J., Verma, R. K., & Singh, S. (2019). Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. International Journal of Phytoremediation, 21(5), 405-418.

Patel, A., & Patra, D. D. (2014). Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth of Tagetes minuta, an essential oil bearing crop. Chemosphere, 112, 323-332.

Pellegrini, M., Ricci, A., Serio, A., Chaves-López, C., Mazzarrino, G., D’Amato, S., ... & Paparella, A. (2018). Characterization of essential oils obtained from Abruzzo autochthonous plants: Antioxidant and antimicrobial activities assessment for food application. Foods, 7(2), 19.

Santos, A. L. P., Ruas de Lima, G. W., & Pedriali Moraes, C. A. (2019). Estudo do potencial do óleo essencial de Lavandula angustiofolia L. como antimicrobiano. InterfacEHS, 14(1).

Pérez, A.P., Eugenio, N.R. Status of local soil contamination in Europe: revision of the indicator “Progress in the management contaminated sites in Europe. Luxemburgo: Publications Office of the European Union, 2018.

Pibiri, M. C., Goel, A., Vahekeni, N., & Roulet, C. A. (2006). Indoor air purification and ventilation systems sanitation with essential oils. International Journal of Aromatherapy, 16(3-4), 149-153.

Pinto, D. A., Mantovani, E. C., Melo, E. D. C., Sediyama, G. C., & Vieira, G. H. S. (2014). Produtividade e qualidade do óleo essencial de capim-limão, Cymbopogon citratus, DC., submetido a diferentes lâminas de irrigação. Revista Brasileira de Plantas Medicinais, 16(1), 54-61.

Puvača, N., Lika, E., Cocoli, S., Shtylla Kika, T., Bursić, V., Vuković, G., ... & Cara, M. (2020). Use of tea tree essential oil (Melaleuca alternifolia) in laying hen’s nutrition on performance and egg fatty acid profile as a promising sustainable organic agricultural tool. Sustainability, 12(8), 3420.

Ramborger, B. P., Paz, M. E. G., Kieling, K. M. C., Carriço, M. R. S., de Paula Gollino, G., Costa, M. T., ... & Roehrs, R. (2021). Toxicological parameters of aqueous residue after using Plectranthus neochilus for 2, 4-D phytoremediation. Chemosphere, 270, 128638.

Rienth, M., Crovadore, J., Ghaffari, S., & Lefort, F. (2019). Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis vinifera) and primes plant immunity mechanisms. PLoS One, 14(9), e0222854.

Rodrigues, P. T. A., & Orlandelli, R. C. (2018). Plantas como Ferramentas para a Remediação Ambiental: uma Revisão da Literatura. UNICIÊNCIAS, 22(1), 38-44.

Rogawansamy, S., Gaskin, S., Taylor, M., & Pisaniello, D. (2015). An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments. International Journal of Environmental Research and Public Health, 12(6), 6319-6332.

Sangwan, N. S., Farooqi, A. H. A., Shabih, F., & Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant Growth Regulation, 34(1), 3-21.

Scalvenzi, L., Radice, M., Toma, L., Severini, F., Boccolini, D., Bella, A., ... & Di Luca, M. (2019). Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite, 26, 1-12.

Sengun, I. Y., Senturk, S., Gul, S., & Kilic, G. (2020). Potential of Essential Oil Combinations for Surface and Air Disinfection. Letters in Applied Microbiology, 72, 526-534.

Sienkiewicz, M., Głowacka, A., Kowalczyk, E., Wiktorowska-Owczarek, A., Jóźwiak-Bębenista, M., & Łysakowska, M. (2014). The biological activities of cinnamon, geranium and lavender essential oils. Molecules, 19(12), 20929-20940.

Soylu, E. M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143(3), 183-189.

Tian, Q., Zhou, W., Cai, Q., Ma, G., & Lian, G. (2021). Concepts, processing, and recent developments in encapsulating essential oils. Chinese Journal of Chemical Engineering, 30, 255-271.

Ultra, V. U. (2020). Growth and yield of lemongrass (Cymbopogon citratus) in fly ash with nutrient amendments and Mycorrhiza for three-ratoon period. International Journal of Phytoremediation, 22(14), 1551-1561.

USEPA (United States Environmental Protection Agency). Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends. Washington: EPA, 2004.

Vasconcellos, M. C., Pagliuso, D., & Sotomaior, V. S. (2012). Fitorremediação: Uma proposta de descontaminação do solo. Estudos de Biologia, 34(83).

Van Eck, N. J., Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, v. 84. n. 2, p. 523-538, 2010.

Vaseeharan, B., Sivalingam, M., & Palaniappan, R. (2013). Inhibitory activity of essential oils from medicinal plants against Pseudomonas sp. isolated from aquatic environments. Aquaculture Research, 45(1), 97-105.

Vidali, M. (2001). Bioremediation. an overview. Pure and Applied Chemistry, 73(7), 1163-1172.

Vieira-Brock, P. L., Vaughan, B. M., & Vollmer, D. L. (2017). Comparison of antimicrobial activities of natural essential oils and synthetic fragrances against selected environmental pathogens. Biochimie Open, 5, 8-13.

Vinu, R., & Madras, G. (2010). Environmental remediation by photocatalysis. Journal of the Indian Institute of Science, 90(2), 189-230.

Vitoratos, A., Bilalis, D., Karkanis, A., & Efthimiadou, A. (2013). Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 86-92.

Volpe, H. X., Fazolin, M., Garcia, R. B., Magnani, R. F., Barbosa, J. C., & Miranda, M. P. (2016). Efficacy of essential oil of Piper aduncum against nymphs and adults of Diaphorina citri. Pest Management Science, 72(6), 1242-1249.

Youssef, N. A. (2021). Changes in the morphological traits and the essential oil content of sweet basil (Ocimum basilicum L.) as induced by cadmium and lead treatments. International Journal of Phytoremediation, 23(3), 291-299.

Publicado

12/06/2021

Cómo citar

CARVALHO NETA, R. N. F. .; SOUSA, D. B. P. .; BARROS, M. F. de S. .; NUNES, K. B. .; TORRES, H. S. .; ASSIS, E. B. V. .; FARIAS, L. F. .; TURRI, R. de J. G. . Usos potenciales de los aceites esenciales en la remediación ambiental: Una revisión. Research, Society and Development, [S. l.], v. 10, n. 7, p. e3210716146, 2021. DOI: 10.33448/rsd-v10i7.16146. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16146. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas