Fomentando el enraizamiento de minirrebolos de Saccharum sp. con ácido indolbutítico en forma de talco
DOI:
https://doi.org/10.33448/rsd-v10i7.16239Palabras clave:
Caña de azúcar; Propagación; AIB; Regulador de crecimiento; Enraizamiento.Resumen
La caña de azúcar es una especie de importancia comercial para la producción de azúcar y biocombustibles y, debido a la alta demanda de material vegetal en la siembra, se están desarrollando nuevos medios de propagación que necesitan mejoras. Por lo tanto, el objetivo de este trabajo fue evaluar el efecto de diferentes concentraciones de ácido indolbutírico (AIB) aplicado en forma de talco sobre el crecimiento inicial y la emergencia de las miniruelas de caña de azúcar utilizadas en el sistema de plántula prebroteda (MPB). Las miniruelas se trataron con concentraciones de 0, 500, 1000, 1500 y 2000 mg kg-1 de AIB en forma de talco y se evaluaron para determinar la emergencia y el crecimiento inicial. No hubo diferencia entre las concentraciones de IBA para las variables fisiológicas, biométricas y de masa seca analizadas. Las plántulas de caña de azúcar formadas presentaron emergencia superior al 89%, aparato fotosintético funcional, 4.4 hojas en promedio, diámetro del tallo de 11.90 mm, largo de brote de 12.18 cm, área foliar de 108, 81 cm² y área de raíces de 142.17 cm². La masa seca de la parte aérea y la masa seca de la raíz fueron de 2,27 y 1,20 gramos, respectivamente. Así, concentraciones de hasta 2.000 mg kg-1 de AIB aplicadas en forma de talco en miniruelas de caña de azúcar no afectaron el enraizamiento y crecimiento inicial de las plántulas.
Citas
Ali, A., Naz, S., Siddiqui, F. A., e Iqbal, J. (2008). An efficient protocol for large scale production of sugarcane through micropropagation. Pakistan Journal of Botany 40(1): 139. Retrieved from: http://www.pakbs.org/pjbot/PDFs/40(1)/PJB40(1)139.pdf
Azevedo, M. C. B. D., Chopart, J. L., e Medina, C. D. C. (2011). Sugarcane root length density and distribution from root intersection counting on a trench-profile. Scientia Agricola 68(1), 94-101. https://doi.org/10.1590/S0103-90162011000100014
Barbosa, A. M., Guidorizi, K. A., Catuchi, T. A., Marques, T. A., Ribeiro, R. V., e Souza, G. M. (2015). Biomass and bioenergy partitioning of sugarcane plants under water deficit. Acta physiologiae plantarum 37(8): 1-8. https://doi.org/10.1007/s11738-015-1887-7
Baldotto, L. E. B., Baldotto, M. A., Giro, V. B., Canellas, L. P., Olivares, F. L., e Bressan-Smith, R. (2009). Desempenho do abacaxizeiro'Vitória'em resposta à aplicação de ácidos húmicos durante a aclimatação. Revista Brasileira de Ciência do Solo 33(4): 979-990. https://doi.org/10.1590/S0100-06832009000400022
Bortolini, M. F., Zuffellato-Ribas, K. C., Koehler, H. S., Carpanezzi, A. A., Deschamps, C., Oliveira, M. D. C., Bona, C., e Mayer, J. L. S. (2008). Tibouchina sellowiana (Cham.) Cogn.: enraizamento, anatomia e análises bioquímicas nas quatro estações do ano. Ciência Florestal 18(2): 159-171. https://doi.org/10.5902/19805098454
Braga Jr, R. L. C., Landell, M. G. A., Silva, D. N., Bidóia, M. A. P., Silva, T. N., Thomazinho Jr, J. R., e Silva, V. H. P. (2017). Censo varietal IAC de cana-de-açúcar na região Centro-Sul do Brasil-Safra 2016/17. Retrieved from: https://www.iac.sp.gov.br/publicacoes/arquivos/iacbt221.pdf
Chopart, J. L., Azevedo, M. C. B., Le Mezo, L., Marion, D. (2010). Functional relationship between sugarcane root biomass and length for cropping system applications. Sugar tech 12(3-4): 317-321. https://doi.org/10.1007/s12355-010-0044-2
Conab. (2017). Acompanhamento da safra brasileira de Cana-de-açúcar. Retrieved from: <http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_04_19_11_27_36_boletim_cana_portugues_-_4o_lev_-_16-17.pdf>. Accessed: 10 jun. 2017.
Ferreira, D., F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia (UFLA) 35(6): 1039-1042. https://doi.org/10.1590/S1413-70542011000600001
Ferreira, L. T., de Araújo Silva, M. M., Ulisses, C., Camara, T. R., e Willadino, L. (2017). Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell, Tissue and Organ Culture (PCTOC) 128(1): 211-221. https://doi.org/10.1007/s11240-016-1101-7
Finet, C., e Jaillais, Y. (2012). Auxology: when auxin meets plant evo-devo. Developmental biology 369(1): 19-31. https://doi.org/10.1016/j.ydbio.2012.05.039
Galon, L., Concenço, G., Ferreira, E. A., Aspiazu, I., da Silva, A. F., Giacobbo, C. L., e Andres, A. (2013). Influence of biotic and abiotic stress factors on physiological traits of sugarcane varieties. In Photosynthesis. InTech. https://doi.org/10.5772/55255.
Girio, L. A. D. S., Ferreira Dias, F. L., Reis, V. M., Urquiaga, S., Schultz, N., Bolonhezi, D., e Mutton, M. A. (2015). Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesquisa Agropecuária Brasileira 50(1): 33-43. https://doi.org/10.1590/S0100-204X2015000100004
Guedes, R. S., Alves, E. U., da Costa, E. M. T., da Silva Santos-Moura, S., da Silva, R. D. S., e da Silva Cruz, F. R. (2013). Avaliação do potencial fisiológico de sementes de Amburana cearensis (Allemão) AC Smith. Bioscience Journal 29(4): 859-866. Retrieved from: http://www.seer.ufu.br/index.php/biosciencejournal/article/view/13994/12892
Guo, M., Song, W., e Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews 42: 712-725. https://doi.org/10.1016/j.rser.2014.10.013
Hermann, E. R., e Câmara, G. M. S. (1999). Um método simples para estimar a área foliar de cana-de-açúcar. Revista da STAB 17(1): 32-34.
Izquierdo-Hernández, J., Salgado-García, S., Lagunes-Espinoza, L. D. C., Palma-López, D. J., Ortiz-Laurel, H., Cordova-Sánchez, S., e Castelán-Estrada, M. (2016). Nutritional and Physiological Response of Sugarcane Varieties to Nitrogen Fertilization in a Haplic Cambisol. Sugar Tech 18(5): https://doi.org/493-499. 10.1007/s12355-015-0416-8
Jorge, L. D. C., e RODRIGUES, A. D. O. (2008). Safira: sistema de análise de fibras e raízes. Embrapa Instrumentação-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E) 24: 1-21. Retrieved from: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/31890/1/BPD242008.pdf
Kareem, A., Jaskani, M. J., Fatima, B., e Sadia, B. (2013). Clonal multiplication of guava through softwood cuttings under mist conditions. Pak. J. Agric. Sci 50: 23-27. https://doi.org/10.17957/IJAB/15.0172
Kesari, V., Krishnamachari, A., e Rangan, L. (2009). Effect of auxins on adventitious rooting from stem cuttings of candidate plus tree Pongamia pinnata (L.), a potential biodiesel plant. Trees 23(3): 597-604. https://doi.org/10.1007/s00468-008-0304-x
Kumari, M., Patade, V. Y., Arif, M., e Ahmed, Z. (2010). Effect of IBA on seed germination, sprouting and rooting in cuttings for mass propagation of Jatropha curcus L strain DARL-2. Research Journal of Agriculture and Biological Sciences 6(6): 691-696. Retrieved from: http://eprints.icrisat.ac.in/887/1/ResJAgriBiolSci_6_6_691_696_2010.pdf
Landell, M. G. A., Campana, M. P., Figueiredo, P., Xavier, M. A., ANJOS, I. A., Dinardo-Miranda, L. L., Scarpari, M. S., Garcia, J. L., Bidóia, M. A. P., Silva, D. N., Mendonça, J. R., Kanthack, R. A. D., Campos, M. F., Brancalião, S. R., Petri, R. H., e Miguel, P. E. M. (2013). Sistema de multiplicação de cana-de-açúcar com uso de mudas-pré-brotadas (MPB), oriundas de gemas individualizadas. Documentos IAC, (109). Retrieved from: https://www.udop.com.br/ebiblio/pagina/arquivos/2013_sistema_multiplicacao_cana_com_mudas_pre_brotadas.pdf
Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development 140(5): 943-950. https://doi.org/10.1242/dev.086363
Ludwig-Müller, J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of experimental botany 62(6): 1757-1773. https://doi.org/10.1093/jxb/erq412
Maguire, J. D. (1962). Speed of Germination—Aid In Selection and Evaluation for Seedling Emergence and Vigor. Crop science 2(2): 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Marchiori, P. E., Machado, E. C., e Ribeiro, R. V. (2014). Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Research 155: 30-37. https://doi.org/10.1016/j.fcr.2013.09.025
Matsuoka, S., e Garcia, A. A. F. (2011). Sugarcane underground organs: going deep for sustainable production. Tropical Plant Biology 4(1): 22-30. https://doi.org/10.1007/s12042-011-9076-3
Moore, P. H., e Botha, F. C. (Ed.). (2013). Sugarcane: physiology, biochemistry and functional biology. John Wiley e Sons, 2013. https://doi.org/10.1002/9781118771280
Muday, G. K., Rahman, A., e Binder, B. M. (2012). Auxin and ethylene: collaborators or competitors?. Trends in plant science 17(4): 181-195. https://doi.org/10.1016/j.tplants.2012.02.001
Mustafa, G., e Khan, M. S. (2016). Differential role of indolebutyric acid in sugarcane root development. Sugar tech 18(1): 55-60. https://doi.org/10.1007/s12355-014-0362-x
Neto, M. C. L., de Santana Ribeiro, J., e Neto, E. B. (2009). Enraizamento de estacas de bambu com o uso de auxinas. Revista Acadêmica: Ciência Animal 7(2): 175-179. http://dx.doi.org/10.7213/cienciaanimal.v7i2.9864
Otto, R., Trivelin, P. C. O., Franco, H. C. J., Faroni, C. E., e Vitti, A. C. (2009). Root system distribution of sugar cane as related to nitrogen fertilization, evaluated by two methods: monolith and probes. Revista Brasileira de Ciência do Solo 33(3): 601-611. https://doi.org/10.1590/S0100-06832009000300013
Prior, L. D., Eamus, D., e Bowman, D. M. J. S. (2003). Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia. Functional Ecology 17(4): 504-515. https://doi.org/10.1046/j.1365-2435.2003.00761.x
Salvador, T. D. L., Salvador, T. D. L., Lemos, E. E. P. D., Barros, P. G., e Campos, R. D. S. (2014). Rooting cuttings of sugar apple (Annona squamosa L.) with indolebutyric acid. Revista Brasileira de Fruticultura 36(SPE1): 310-314. https://doi.org/10.1590/S0100-29452014000500037
Silva, F. G., Dutra, W. F., Dutra, A. F., de Oliveira, I. M., Filgueiras, L., e Melo, A. S. (2015). Trocas gasosas e fluorescência da clorofila em plantas de berinjela sob lâminas de irrigação. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi 19(10): 946-952. https://doi.org/10.1590/1807-1929/agriambi.v19n10p946-952
Simon, S., e Petrášek, J. (2011). Why plants need more than one type of auxin. Plant Science 180(3): 454-460. https://doi.org/10.1016/j.plantsci.2010.12.007
Sindhu, R., Gnansounou, E., Binod, P., e Pandey, A. (2016). Bioconversion of sugarcane crop residue for value added products–An overview. Renewable Energy 98: 203-215. https://doi.org/10.1016/j.renene.2016.02.057
Souza, A. P., Gaspar, M., Silva, E. A., Ulian, E. C., Waclawovsky, A. J., Nishiyama Jr, M. Y., Santos, R. V., Teixeira, M. M. Souza, G. M e Buckeridge, M. S. (2008). Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, cell & environment 31(8): 1116-1127. https://doi.org/10.1111/j.1365-3040.2008.01822.x
Stokes, C. J., Inman-Bamber, N. G., Everingham, Y. L., e Sexton, J. (2016). Measuring and modelling CO2 effects on sugarcane. Environmental Modelling & Software 78, 68-78. https://doi.org/10.1016/j.envsoft.2015.11.022
Tesfa, M., Admassu, B., e Bantte, K. (2016). Ex Vitro Rooting of Sugarcane (Saccharum officinarum L.) Plantlets Derived from Tissue Culture. Advances in Crop Science and Technology 4(2): 1-4. https://doi.org/10.4172/2329-8863.1000215
Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of plant physiology 144(3): 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
Yamamoto, L. Y., Borges, R. D. S., Sorace, M., Rachid, B. F., Ruas, J. M. F., Sato, O., Assis, A. M., e Roberto, S. R. (2010). Enraizamento de estacas de Psidium guajava L.'Século XXI tratadas com ácido indolbutírico veiculado em talco e álcool. Ciência Rural 40(5): 1037-1042. https://doi.org/10.1590/S0103-84782010000500006
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Janniffer Custódio da Silva; Camila Vilela Vasconcelos; Ana Cristina Lourenço de Souza; Fabiano Guimarães Silva; Aurélio Rubio Neto; Paula Fabiane Martins
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.