La Osteoartritis de rodilla y el aspirado de médula ósea como opción de tratamiento: Una revisión narrativa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i7.16391

Palabras clave:

Artrosis de rodilla; Células madre mesenquimales de la médula ósea; Medicina regenerativa.

Resumen

Introducción: La osteoartritis degenerativa (OA) es la principal causa de dolor físico y discapacidad en el mundo, además de estar relacionada con más de 100 afecciones reumatológicas y ortopédicas que afectan las articulaciones y sus tejidos. Objetivo: recopilar información en portugués sobre el uso del aspirado de médula ósea en el tratamiento de la artrosis de rodilla. Metodología: Revisión narrativa realizada a través de fuentes literarias y científicas, a través de la plataforma US National Library of Medicine (PUBMED). Los descriptores de ciencias de la salud utilizados fueron: artrosis de rodilla, epidemiología, etiología, fisiopatología, tratamiento, aspirado de médula ósea. Discusión: La OA de rodilla tiene mecanismos que provocan inflamación en algún grado en condrocitos y células sinoviales, liberando algunas citocinas que disminuyen la síntesis de colágeno, además de estimular mediadores catabólicos, provocando la apoptosis de condrocitos. Así, el aspirado de médula ósea (BMA) aparece como una terapia celular innovadora, ya que sus células madre mesenquimales (MSC) tienen un gran potencial inmunomodulador, aunque sus mecanismos aún no se conocen del todo. Conclusión: nuevas opciones terapéuticas, como las MSC obtenidas por BMA, parecen complementar los espacios que necesitan los tratamientos más mal utilizados en la actualidad, a través de su interacción inmunomoduladora. Ciertamente, existen vacíos en sus mecanismos, requiriendo malos estudios sobre el tema, con el propósito de consolidarlo como un tratamiento totalmente viable para la OA, como promete desde los prometedores estudios existentes.

Citas

Bastos, R., Mathias, M., Andrade, R., Bastos, R., Balduino, A., Schott, V., & Espregueira-Mendes, J. (2018). Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy, 26(11), 3342-3350.

Belluzzi, E., Stocco, E., Pozzuoli, A., Granzotto, M., Porzionato, A., Vettor, R., & Macchi, V. (2019). Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain. BioMed research international, 2019.

Caplan, A. I. (2019). Medicinal signalling cells: they work, so use them. Nature, 566(7742), 39-40.

Chahal, J., Gómez‐Aristizábal, A., Shestopaloff, K., Bhatt, S., Chaboureau, A., Fazio, A., & Viswanathan, S. (2019). Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem cells translational medicine, 8(8), 746-757.

Centeno, C., Pitts, J., Al-Sayegh, H., & Freeman, M. (2014). Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. BioMed research international, 2014.

Chu, C. R., Millis, M. B., & Olson, S. A. (2014). Osteoarthritis: from palliation to prevention: AOA critical issues. The Journal of bone and joint surgery. American volume, 96(15).

Englund, M., Roemer, F. W., Hayashi, D., Crema, M. D., & Guermazi, A. (2012). Meniscus pathology, osteoarthritis and the treatment controversy. Nature Reviews Rheumatology, 8(7), 412.

Everts, P. A., Ferrell, J., Mahoney, C. B., II, G. F., Irizarry-de Roman, M., Paul, R., & Mautner, K. (2020). A Comparative Quantification in Cellularity of Bone Marrow Aspirated with two New Harvesting Devices, and The Non-equivalent Difference Between A Centrifugated Bone Marrow Concentrate And A Bone Marrow Aspirate As Biological Injectates, Using A Bi-Lateral Patient Model.

Flandry, F., & Hommel, G. (2011). Normal anatomy and biomechanics of the knee. Sports medicine and arthroscopy review, 19(2), 82-92.

Funck-Brentano, T., & Cohen-Solal, M. (2015). Subchondral bone and osteoarthritis. Current opinion in rheumatology, 27(4), 420-426.

Garay‐Mendoza, D., Villarreal‐Martínez, L., Garza‐Bedolla, A., Pérez‐Garza, D. M., Acosta‐Olivo, C., Vilchez‐Cavazos, F., & Mancías‐Guerra, C. (2018). The effect of intra‐articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. International journal of rheumatic diseases, 21(1), 140-147.

Gobbi, A., Espregueira-Mendes, J., Lane, J. G., & Karahan, M. (2017). Bio-orthopaedics. Berlin, Heidelberg: Springer Berlin Heidelberg.

Gobbi, A., Karnatzikos, G., Scotti, C., Mahajan, V., Mazzucco, L., & Grigolo, B. (2011). One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage, 2(3), 286-299.

Goldring, M. B., & Marcu, K. B. (2009). Cartilage homeostasis in health and rheumatic diseases. Arthritis research & therapy, 11(3), 1-16.

Goldring, M. B., Otero, M., Plumb, D. A., Dragomir, C., Favero, M., El Hachem, K., & Marcu, K. B. (2011). Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. European cells & materials, 21, 202.

Goldring, S. R. (2009). Role of bone in osteoarthritis pathogenesis. Medical Clinics of North America, 93(1), 25-35.

Goldring, S. R., & Goldring, M. B. (2016). Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nature Reviews Rheumatology, 12(11), 632.

Hegde, V., Shonuga, O., Ellis, S., Fragomen, A., Kennedy, J., Kudryashov, V., & Lane, J. M. (2014). A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. Journal of orthopaedic trauma, 28(10), 591-598.

Hernigou, P., Homma, Y., Lachaniette, C. H. F., Poignard, A., Allain, J., Chevallier, N., & Rouard, H. (2013). Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. International orthopaedics, 37(11), 2279-2287.

Hong, S. J., Traktuev, D. O., & March, K. L. (2010). Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Current opinion in organ transplantation, 15(1), 86-91.

Jamshidi, A., Pelletier, J. P., & Martel-Pelletier, J. (2019). Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nature Reviews Rheumatology, 15(1), 49-60

Jäger, M., Hernigou, P., Zilkens, C., Herten, M., Li, X., Fischer, J., & Krauspe, R. (2010). Cell therapy in bone healing disorders. Orthopedic reviews, 2(2).

Kim, G. B., Seo, M. S., Park, W. T., & Lee, G. W. (2020). Bone marrow aspirate concentrate: Its uses in osteoarthritis. International journal of molecular sciences, 21(9), 3224.

Kim, J. D., Lee, G. W., Jung, G. H., Kim, C. K., Kim, T., Park, J. H., & You, Y. B. (2014). Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. European Journal of Orthopaedic Surgery & Traumatology, 24(8), 1505-1511.

Kim, J. R., Yoo, J. J., & Kim, H. A. (2018). Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis. International journal of molecular sciences, 19(3), 674.

Krishnasamy, P., Hall, M., & Robbins, S. R. (2018). The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis. Rheumatology, 57(suppl_4), iv22-iv33.

Lawrence, R. C., Felson, D. T., Helmick, C. G., Arnold, L. M., Choi, H., Deyo, R. A., & National Arthritis Data Workgroup. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II. Arthritis & Rheumatism, 58(1), 26-35.

Lespasio, M. J., Piuzzi, N. S., Husni, M. E., Muschler, G. F., Guarino, A. J., & Mont, M. A. (2017). Knee osteoarthritis: a primer. The Permanente Journal, 21.

Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: a disease of the joint as an organ. Arthritis and rheumatism, 64(6), 1697.

Mabey, T., Honsawek, S., Tanavalee, A., Yuktanandana, P., Wilairatana, V., & Poovorawan, Y. (2016). Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers, 21(7), 639-644.

Mancuso, P., Raman, S., Glynn, A., Barry, F., & Murphy, J. M. (2019). Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Frontiers in bioengineering and biotechnology, 7, 9..

Musumeci, G. (2016). The effect of mechanical loading on articular cartilage.

Pierini, M., Di Bella, C., Dozza, B., Frisoni, T., Martella, E., Bellotti, C., & Donati, D. (2013). The posterior iliac crest outperforms the anterior iliac crest when obtaining mesenchymal stem cells from bone marrow. JBJS, 95(12), 1101-1107.

Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 4(1), 1-15.

Piuzzi, N. S., Khlopas, A., Newman, J. M., Ng, M., Roche, M., Husni, M. E., & Muschler, G. (2018). Bone marrow cellular therapies: novel therapy for knee osteoarthritis. The journal of knee surgery, 31(01), 022-026.

Prodromos, C., Finkle, S., Rumschlag, T., & Lotus, J. (2020). Autologous Mesenchymal Stem Cell Treatment is Consistently Effective for the Treatment of Knee Osteoarthritis: The Results of a Systematic Review of Treatment and Comparison to a Placebo Group. Medicines, 7(8), 42.

Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., & Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell stem cell, 2(2), 141-150.

Rezende, M. U. D., Silva, R. B. B. D., Bassit, A. C. F., Tatsui, N. H., Sadigursky, D., & Bolliger Neto, R. (2011). Efeito do plasma rico em plaquetas na apoptose pós-traumática de condrócitos. Acta Ortopédica Brasileira, 19(2), 102-105.

Roos, E. M., & Arden, N. K. (2016). Strategies for the prevention of knee osteoarthritis. Nature Reviews Rheumatology, 12(2), 92.

Sanchez, C., Pesesse, L., Gabay, O., Delcour, J. P., Msika, P., Baudouin, C., & Henrotin, Y. E. (2012). Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis & Rheumatism, 64(4), 1193-1203.

Sellam, J., & Berenbaum, F. (2010). The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nature Reviews Rheumatology, 6(11), 625.

Shapiro, S. A., Arthurs, J. R., Heckman, M. G., Bestic, J. M., Kazmerchak, S. E., Diehl, N. N., & O’Connor, M. I. (2019). Quantitative T2 MRI mapping and 12-month follow-up in a randomized, blinded, placebo controlled trial of bone marrow aspiration and concentration for osteoarthritis of the knees. Cartilage, 10(4), 432-443.

Shapiro, S. A., Kazmerchak, S. E., Heckman, M. G., Zubair, A. C., & O’Connor, M. I. (2017). A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. The American journal of sports medicine, 45(1), 82-90.

Shetty, A. A., Kim, S. J., Ahmed, S., Trattnig, S., Kim, S. A., & Jang, H. J. (2018). A cost-effective cell-and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology. The Annals of The Royal College of Surgeons of England, 100(3), 240-246.

Silverwood, V., Blagojevic-Bucknall, M., Jinks, C., Jordan, J. L., Protheroe, J., & Jordan, K. P. (2015). Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis and cartilage, 23(4), 507-515.

Wu, C. L., Harasymowicz, N. S., Klimak, M. A., Collins, K. H., & Guilak, F. (2020). The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis and cartilage.

Xia, B., Chen, D., Zhang, J., Hu, S., Jin, H., & Tong, P. (2014). Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcified tissue international, 95(6), 495-505.

Yang, Q., Zhou, Y., Cai, P., Fu, W., Wang, J., Wei, Q., & Li, X. (2019). Up-regulated HIF-2α contributes to the Osteoarthritis development through mediating the primary cilia loss. International immunopharmacology, 75, 105762.

Zhang, W., Moskowitz, R. W., Nuki, G., Abramson, S., Altman, R. D., Arden, N., & Tugwell, P. (2007). OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis and cartilage, 15(9), 981-1000.

Zhang, W., Moskowitz, R. W., Nuki, G., Abramson, S., Altman, R. D., Arden, N., & Tugwell, P. (2008). OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and cartilage, 16(2), 137-162.

Zhang, W., Nuki, G., Moskowitz, R. W., Abramson, S., Altman, R. D., Arden, N. K., & Tugwell, P. (2010). OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis and cartilage, 18(4), 476-499.

Publicado

18/06/2021

Cómo citar

CUNHA, P. F. A.; SILVA, R. B. B. da . La Osteoartritis de rodilla y el aspirado de médula ósea como opción de tratamiento: Una revisión narrativa. Research, Society and Development, [S. l.], v. 10, n. 7, p. e17410716391, 2021. DOI: 10.33448/rsd-v10i7.16391. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16391. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud