Caracterización fisicoquímica de residuos agroindustriales para la producción de etanol de segunda generación

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.17151

Palabras clave:

Lignocelulósicos; Salvado de paja de arroz; Bagazo de caña de azúcar; Salvado de cáscara de maíz; Bioetanol.

Resumen

La producción de etanol a partir de fuentes renovables, como los materiales lignocelulósicos, ya está en marcha en varios países. El interés en la tecnología proviene de las preocupaciones sobre el calentamiento global y los impactos ambientales de la eliminación de desechos sólidos. Además, la conversión de desechos agroindustriales en etanol es una estrategia de valor agregado. Este estudio tuvo como objetivo evaluar las características fisicoquímicas de tres materiales lignocelulósicos —salvado de paja de arroz, bagazo de caña de azúcar y salvado de cáscara de maíz— y determinar, a partir de estos análisis, su idoneidad como materia prima para la producción de etanol de segunda generación. La caracterización fisicoquímica incluyó la determinación del tamaño de partícula, humedad, cenizas, sólidos totales, actividad de agua, grasa cruda, proteína, extractos totales, lignina soluble e insoluble, holocelulosa, celulosa, hemicelulosa y carbohidratos totales. El salvado de paja de arroz está compuesto por un 38,33% de celulosa y un 19,73% de hemicelulosa, el bagazo de caña de azúcar está compuesto por un 27,09% de celulosa y un 5,61% de hemicelulosa, y el salvado de cáscara de maíz está compuesto por un 55,75% de celulosa y un 12,93% de hemicelulosa. La caracterización mostró la alta concentración de celulosa en el residuo del salvado de cáscara de maíz. Los resultados indican que las tres biomasas son materias primas adecuadas para la producción de biocombustibles.

Citas

AOAC international. Official methods of analysis of AOAC International. (1995). (16th ed.), AOAC International.

Abraham, A., Mathew, A. K., Sindhu, R., Pandey, A., & Binod, P. (2016). Potential of rice bio-refining: An overview. Bioresource Technology, 215, 29-36.

Bahmani, M. A., Shafiei, M., Karimi, K. (2016). Anaerobic digestion as a pretreatment to enhance ethanol yield from lignocelluloses. Process Biochemistry, 51 (9), 1256-1263.

Cai, P. L., Luo, Z., Qin, P., Chen, C., Wang, Y., Zhang C., Wang, Z., & Tan, T. (2016). Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology, 206, 86-92.

Carvalho, G. G. P., Pires, A. J. V., Veloso, C. M., Magalhães, A. F., Freire, M. A. L., Silva, F. F., Silva, R. R., Carvalho, B. M. A. (2006). Valor nutritivo do bagaço de cana-de-açúcar amonizado com quatro doses de uréia. Pesquisa Agropecuária Brasileira, 41 (1), 125-132.

Cavalcante, C. E. B., Rodrigues, S., Afonso, M. R. A., & Costa, J. M. C. (2018). Comportamento higroscópico da polpa de graviola em pó obtida por secagem em spray dryer. Brazilian Journal of Food Technology, 21 e 2017121.

Chaud, L. C. S., Arruda, P. V., & Felipe, M. G. A. (2009). Potencial do farelo de arroz para utilização em bioprocessos. Revista Científica da Fundação Educacional de Ituverava, 6 (2).

Filho, S. R., & Juliani, A. J. (2013). Sustentabilidade da produção de etanol de cana-de-açúcar no Estado de São Paulo. Estudos Avançados, 27 (78), 195-212.

Gombert, A. K., & Maris, A. J. (2015). Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Current Opinion Biotechnology, 33, 81-86.

Gomide, R. Operações Unitárias. (1997). Edição do Autor.

Hames, B., Scarlata, C., & Sluiter, A. (2008). Determination of protein content in biomass. Golden Colorado: National Renewable Energy Laboratory. Technical Report. NREL/TP-510-42625. https://www.nrel.gov/docs/gen/fy08/42625.pdf

Islam, M. S., Kao, N., Bhattacharyam, S. N., Gupta, R., & Bhattacharjee, P. K. (2017). Effect of low pressure alkaline delignification process on the production of nanocrystalline cellulose from rice husk. Journal of the Taiwan Institute of Chemical Engineers, 80, 820-834.

Jan, K., Riar, C. S., & Saxena, D. C. (2017). Characterization of agro-industrial byproducts and wastes for sustainable industrial application. Journal of Food Measurement and Characterization, 11, 1254-1265.

Kunrath, M. A., Kessler, A. M., Ribeiro, A. M. L., Vieira, M. M., Silva, G. L., & Peixoto, F. D. (2010). Evaluation methodologies of nutritional value of defatted rice bran for swine. Pesquisa Agropecuária Brasileira, 45, 1172-1179.

Lee, J., Vadlani, P. V., & Faubion, J. (2017). Corn bran bioprocessing: Development of an integrated process for microbial lipids production. Bioresource Technology, 243, 196-203.

Manochio, C., Andrade, B. R., Rodriguez, R. P., & Moraes, B. S. (2017). Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews, 80, 743-755.

Mitra, J., Shrivastava, S. L., & Srinivasa, R. (2015). Characterization of vacuum dried onion slices. Journal of Food Measurement and Characterization, 9, 1-10.

Moongngarm, M., Daomukda, N., & Khumpika, S. (2012). Chemical Compositions, Phytochemicals, and Antioxidant Capacity of Rice Bran, Rice Bran Layer, and Rice Germ. APCBEE Procedia, 2, 73 – 79. https://doi.org/10.1016/j.apcbee.2012.06.014.

Morais, J. P. S., Rosa, M. F., & Marconcini, J. M. (2010). Procedimentos para análise lignocelulósica. Documentos 236. Campina Grande: Embrapa Algodão. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/883400/1/DOC236.pdf.

Mourtzinis, S., Cantrell, K. B., Arriaga, F. J., Balkcom, K. S., Novak, J. M., Frederick, J. R., & Karlen D. L. (2016). Carbohydrate and nutrient composition of corn stover from three southeastern USA locations. Biomass and Bioenergy, 85, 153-158.

Narron, R. H., Han, Q., Park, S., Chang, H., & Jameel, H. (2017). Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process. Bioresource Technology, 241, 857-867.

OECD/FAO (2016), OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris. http://dx.doi.org/10.1787/agr_outlook-2016-en.

Ordoñez, J. A. et al (2005). Tecnologia de alimentos: componentes dos alimentos e processos. Artmed.

Panaro, M. S., de Barros, R. R. O., Teixeira, R. S. S., & Bon, E. P. S. (2015). Pré-tratamento de biomassa de cana-de-açúcar por moinho de bolas em meios seco, úmido e na presença de aditivos. Blucher Chemical Engineering Proceedings, 1 (1).

Paula, L. E. R., Trugilho, P. F. Napoli, A., & Bianchi, M. L. (2011). Characterization of residues from plant biomass for use in energy generation. Cerne, 17, 237-246.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=.

Prasara-A, J., & Gheewala, S. (2017). Sustainable utilization of rice husk ash from power plants: A review. Journal of Cleaner Production, 167, 1020-1028.

Raele, R., Boaventura, J. M.G., Fischmann, A. A., & Sarturi, G. (2014). Scenarios for the second generation ethanol in Brazil. Technological Forecasting & Social Change, 87, 205-223.

Ranby B. G. (1952). The Physical Characteristics of Alpha-, Beta- and Gamma-Cellulose, Tappi method, Sven. Papperstidn, 55, 115-124.

Rastogi, M., & Shrivastava, S. (2017). Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation process. Renewable and Sustainable Energy Reviews, 80, 330-340.

Romão, D. R. Potencial de Fibras de resíduo agrícola: palha de milho (Zea mays L.) para a produção de celulose (2015). Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal. Available from:

Santos, F. A., Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potential of sugarcane straw for ethanol production. Química Nova, 35, 1004-1010.

Sasaki, K., Okamoto, M., Shirai, T., Tsuge, Y., Fujino, A., Sasaki, D., Morita, M., Matsuda, F., Kikuchi, J., & Kondo, A. (2016). Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration. Bioresource Technology, 216, 830-837.

Silva, C. F. L., Schirmer, M. A., Maeda, R. N., & Barcelos, C. A. (2015). Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electronic Journal of Biotechnology, 18, 10-15.

Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008a). Determination of extractives in biomass. Golden, Colorado: National Renewable Energy Laboratory. Technical Report. NREL/TP-510-42619. https://www.nrel.gov/docs/gen/fy08/42619.pdf

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, Sluiter, J., Templeton, D., & Wolfe, J. (2008b). Determination of total solids in biomass and total dissolved solids in liquid process samples. Golden, Colorado: National Renewable Energy Laboratory. Technical Report. NREL/TP-510-42621.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008c). Determination of ash in biomass. Golden, Colorado: National Renewable Energy Laboratory. Technical Report. NREL/TP-510-42622.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass. Golden, Colorado: National Renewable Energy Laboratory. Technical Report. NREL/TP-510-42618. https://www.nrel.gov/docs/gen/fy13/42618.pdf

Sudha, M. L., Indumathi, K., Sumanth, M. S. S. Rajarathnam, S., & Shashirekha, M. N. (2015). Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. Journal of Food Measurement and Characterization, 9, 381-388.

Szczerbowski, D., Pitarelo, A .P., Filho, A. Z., & Ramos, L. P. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydrate Polymers, 114, 95-101.

UDOP. União dos Produtores de bioenergia. (2017). Available from: http://www.udop.com.br/index.php?item=noticias&cod=1154751.

USDA. United States Department of Agriculture (2020). Brazil: Biofuels Annual. Available from: https://www.fas.usda.gov/data/brazil-biofuels-annual-7.

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89, 913-933.

Vieira, A. C., de Souza, S. N. M., Bariccatti, R. A., Siqueira, J. A. C., & Nogueira, C. E. C. (2013). Caracterização da casca de arroz para geração de energia. Revista Varia Scientia Agrárias, 3, 51-57.

Zambom, M.A., Alcalde, C. R., da Silva, K. T., Macedo, F. A. F., Ramos, C. C. O., & Passianoto, G. O. (2008). Performance and nutrients digestibility of rations with soybean hulls as a corn ground replacement for Saanen goats, in prepartum and lactation. Revista Brasileira de Zootecnia, 37, 1311-1318.

Zheng, W., Zheng, Q., Xue, Y., Hu, J., & Gao, M. (2017). Influence of rice straw polyphenols on cellulase production by Trichoderma reesei. Journal of Bioscience and Bioengineering, 123, 731-738.

Ziaie-shirkolaee, Y., Mohammadi-Rovshandeh, J., Charani, P. R., & Khajeheian, M. B. (2007). Study on cellulose degradation during organosolv delignification of wheat straw and evaluation of pulp properties. Iranian Polymer Journal, 16 (2), 83-96.

Descargas

Publicado

13/07/2021

Cómo citar

EVANGELISTA, I. V. .; ARRUDA, A. G. .; MENEZES, L. S. de .; FISCHER, J. .; GUIDINI, C. Z. . Caracterización fisicoquímica de residuos agroindustriales para la producción de etanol de segunda generación. Research, Society and Development, [S. l.], v. 10, n. 8, p. e33110817151, 2021. DOI: 10.33448/rsd-v10i8.17151. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17151. Acesso em: 22 ene. 2025.

Número

Sección

Ingenierías