Influencia de la ansiedad en la variabilidad de la frecuencia cardíaca de los pacientes en cirugía ortopédica preoperatoria
DOI:
https://doi.org/10.33448/rsd-v10i8.17237Palabras clave:
Variabilidad de la Frecuencia Cardíaca; Pacientes en Cirurgia Ortopedica Preoperatoria; Ansiedad; Metodos no lineales; Algoritmo de árbol de decisión.Resumen
La ansiedad es una respuesta emocional negativa a situaciones que amenazan al sujeto. Objetivo: El presente estudio tiene como objetivo verificar la influencia de la ansiedad en la variabilidad de la frecuencia cardíaca, considerando dos momentos específicos: la hospitalización y antes de la cirugía. En este estudio analítico y transversal, se utilizó la Escala Hospitalaria de Ansiedad y Depresión (HADS) para clasificar los niveles de ansiedad. Método: Las series de tiempo de los intervalos RR fueron recopiladas por el monitor Polar®. Los métodos no lineales y el algoritmo de árbol de decisión se combinaron con la escala HADS para analizar la influencia del período preoperatorio en la variabilidad de la frecuencia cardíaca. Los métodos no lineales utilizaron análisis de fluctuación sin tendencia (DFA), análisis de cuantificación de recurrencia (RQA) y medida de tendencia central (CTM). Resultados: Entre los 42 participantes del estudio, 13 (31%) fueron clasificados como ansiosos en el momento del ingreso al hospital. Los métodos aplicados en el dominio del tiempo encontraron un aumento en los valores de variabilidad de la frecuencia cardíaca (VFC) en todas las características analizadas (p <0,05). El método CTM mostró reducción de la VFC para los valores considerando radios entre 6 y 20 milisegundos (p <0.05). Conclusión: La ansiedad identificada al ingreso está directamente relacionada con la reducción de la variabilidad de la frecuencia cardíaca demostrada por métodos no lineales, como la medida de tendencia central.
Citas
Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. (2016). Diretrizes Brasileiras de Obesidade. https://abeso.org.br/wp-content/uploads/2019/12/Diretrizes-Download-Diretrizes-Brasileiras-de-Obesidade-2016.pdf
Albuquerque, A. L. M. de., Sousa Filho, P. G. T. de., Braga Junior, M. B., Cavalcante Neto, J. de S., Medeiros, B. B. L. de., & Lopes, M. B. G. (2012). Epidemiologia das fraturas em pacientes do interior do Ceará tratadas pelo SUS. Acta Ortopédica Brasileira, 20(2), 66–69. https://doi.org/10.1590/S1413-78522012000200001
Albuquerque, R. P., Hara, R., Prado, J., Schiavo, L., Giordano, V., & Amaral, N. P. do. (2013). Estudo epidemiológico das fraturas do planalto tibial em hospital de trauma nível I. Acta Ortopédica Brasileira. https://doi.org/10.1590/s1413-78522013000200008
Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart Rate Variability in Athletes. In Sports Medicine. https://doi.org/10.2165/00007256-200333120-00003
Billman, G. E. (2009). Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1171–H1193. https://doi.org/10.1152/ajpheart.00534.2009
Brunetto, A. F., Silva, B. M., Roseguini, B. T., Hirai, D. M., & Guedes, D. P. (2005). Limiar ventilatório e variabilidade da freqüência cardíaca em adolescentes. Revista Brasileira de Medicina Do Esporte, 11(1), 22–27. https://doi.org/10.1590/S1517-86922005000100003
Cambri, L. T., Fronchetti, L., De-Oliveira, F. R., Gevaerd, M. S., & Oliveira, F. R. (2008). Variabilidade da frequência cardíaca e controlo metabólico. Arq Sanny Pesq Saúde. https://doi.org/10.1017/CBO9781107415324.004
Caumo, W., Schmidt, A. P., Schneider, C. N., Bergmann, J., Iwamoto, C. W., Adamatti, L. C., Bandeira, D., & Ferreira, M. B. C. (2001). Risk factors for postoperative anxiety in adults. Anaesthesia. https://doi.org/10.1046/j.1365-2044.2001.01842.x
Chalmers, J. A., Quintana, D. S., Abbott, M. J. A., & Kemp, A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2014.00080
Christóforo, B. E. B., & Carvalho, D. S. (2009). Cuidados de enfermagem realizados ao paciente cirúrgico no período pré-operatório. Revista Da Escola de Enfermagem Da USP, 43(1), 14–22. https://doi.org/10.1590/S0080-62342009000100002
Cohen, M. E., Hudson, D. L., & Deedwania, P. Ć. (1996). Applying continuous chaotic modeling to cardiac signal analysis. In IEEE Engineering in Medicine and Biology Magazine. https://doi.org/10.1109/51.537065
DATASUS. (2019). DataSUS/TABNET. Ministério Da Saúde. Available in http://www2.datasus.gov.br/DATASUS.
De Castro, R. R. M., Ribeiro, N. F., De Andrade, A. M., & Jaques, B. D. (2013). Orthopedics nursing patients’ profile of a public hospital in Salvador-Bahia. Acta Ortopedica Brasileira. https://doi.org/10.1590/S1413-78522013000400001
Dos Santos, L., Barroso, J. J., De Godoy, M. F., Macau, E. E. N., & Freitas, U. S. (2014). Recurrence quantification analysis as a tool for discrimination among different dynamics classes: The heart rate variability associated to different age groups. Springer Proceedings in Mathematics and Statistics, 103. https://doi.org/10.1007/978-3-319-09531-8_8
Dos Santos, L., Barroso, J. J., Macau, E. E. N., & de Godoy, M. F. (2015). Assessment of heart rate variability by application of central tendency measure. Medical and Biological Engineering and Computing, 53(11). https://doi.org/10.1007/s11517-015-1390-8
Dos Santos, L., Barroso, J. J., Macau, E. E. N., & de Godoy, M. F. (2013). Application of an automatic adaptive filter for Heart Rate Variability analysis. Medical Engineering & Physics. https://doi.org/10.1016/j.medengphy.2013.07.009
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. In Emotion. https://doi.org/10.1037/1528-3542.7.2.336
Härter, M. C., Conway, K. P., & Merikangas, K. R. (2003). Associations between anxiety disorders and physical illness. European Archives of Psychiatry and Clinical Neuroscience. https://doi.org/10.1007/s00406-003-0449-y
Hayashi, J. M., & Garanhani, M. L. (2012). Perioperatory care of the orthopaedic patient from the nursing team perspective. Revista Mineira de Enfermagem.
Homma, I., & Masaoka, Y. (2008). Breathing rhythms and emotions. In Experimental Physiology. https://doi.org/10.1113/expphysiol.2008.042424
Huikuri, H. V., Mäkikallio, T. H., & Perkiömäki, J. (2003). Measurement of Heart Rate Variability by Methods Based on Nonlinear Dynamics. Journal of Electrocardiology. https://doi.org/10.1016/j.jelectrocard.2003.09.021
Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Lazarova, Z., Javorkova, J., & Javorka, K. (2008). Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clinical Physiology and Functional Imaging, 28(5), 326–331. https://doi.org/10.1111/j.1475-097X.2008.00813.x
Jeong, J., Gore, J. C., & Peterson, B. S. (2002). A method for determinism in short time series, and its application to stationary EEG. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2002.804581
Jorge, M. H. P. de M., Laurenti, R., Lima-Costa, M. F., Gotlieb, S. L. D., & Filho, A. D. P. C. (2008). A mortalidade de idosos no Brasil: a questão das causas mal definidas. Epidemiologia e Serviços de Saúde, 17(4). https://doi.org/10.5123/S1679-49742008000400004
Kamath, M. V., Watanabe, M. A., & Upton, A. R. M. (2016). Heart rate variability (HRV) signal analysis: Clinical applications. In Heart Rate Variability (HRV) Signal Analysis: Clinical Applications.
Kemp, A. H., Brunoni, A. R., Nunes, M. A., Santos, I. S., Goulart, A. C., Ribeiro, A. L., Bensenor, I. M., & Lotufo, P. A. (2015). The association between mood and anxiety disorders, and coronary heart disease in Brazil: a cross-sectional analysis on the Brazilian longitudinal study of adult health (ELSA-Brasil). Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00187
Kemp, A. H., Quintana, D. S., Felmingham, K. L., Matthews, S., & Jelinek, H. F. (2012). Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: Implications for cardiovascular risk. PLoS ONE. https://doi.org/10.1371/journal.pone.0030777
Kessler, R. C., Angermeyer, M., Anthony, J. C., DE Graaf, R., Demyttenaere, K., Gasquet, I., DE Girolamo, G., Gluzman, S., Gureje, O., Haro, J. M., Kawakami, N., Karam, A., Levinson, D., Medina Mora, M. E., Oakley Browne, M. A., Posada-Villa, J., Stein, D. J., Adley Tsang, C. H., Aguilar-Gaxiola, S., & Ustün, T. B. (2007). Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry: Official Journal of the World Psychiatric Association (WPA).
Kfuri Junior, M. (2011). O trauma ortopédico no Brasil. Revista Brasileira de Ortopedia, 46, 0–0. https://doi.org/10.1590/S0102-36162011000700003
Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789–R797. https://doi.org/10.1152/ajpregu.00069.2002
Lima, A. L. L. M., Zumiotti, A. V., Uip, D. E., & Silva, J. dos S. (2004). Fatores preditivos de infecção em pacientes com fraturas expostas nos membros inferiores. Acta Ortopédica Brasileira. https://doi.org/10.1590/s1413-78522004000100005
Maciel, T. V., Seus, V. D. R., Machado, K. D. S., & Borges, E. N. (2015). Mineração de dados em triagem de risco de saúde. Revista Brasileira de Computação Aplicada. https://doi.org/10.5335/rbca.2015.4651
Malpas, S. C. (2010). Sympathetic Nervous System Overactivity and Its Role in the Development of Cardiovascular Disease. Physiological Reviews, 90(2), 513–557. https://doi.org/10.1152/physrev.00007.2009
Marães, V. R. F. S. (2010). Heart rate and its variability: Analysis and applications. Heart Rate and Its Variability: Analysis and Applications.
Marcolino, J. A. M., Mathias, L. A. da S. T., Piccinini Filho, L., Guaratini, A. A., Suzuki, F. M., & Alli, L. A. C. (2007). Hospital Anxiety and Depression Scale: a study on the validation of the criteria and reliability on preoperative patients. Revista Brasileira de Anestesiologia. https://doi.org/10.1590/S0034-70942007000100006
Marwan, N., Carmen Romano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. In Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001
Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. https://doi.org/10.1103/PhysRevE.66.026702
Masetic, Z., & Subasi, A. (2016). Congestive heart failure detection using random forest classifier. Computer Methods and Programs in Biomedicine, 130, 54–64. https://doi.org/10.1016/j.cmpb.2016.03.020
Melillo, P., Bracale, M., & Pecchia, L. (2011). Nonlinear Heart Rate Variability features for real-life stress detection. Case study: Students under stress due to university examination. BioMedical Engineering Online. https://doi.org/10.1186/1475-925X-10-96
Melione, L. P. R., & De Mello-Jorge, M. H. P. (2008). Unified national health system costs in São José dos Campos, São Paulo State, Brazil, for hospital admissions due to external causes. Cadernos de Saude Publica. https://doi.org/10.1590/s0102-311x2008000800010
Melo, R. C., Santos, M. D. B., Silva, E., Quitério, R. J., Moreno, M. A., Reis, M. S., Verzola, I. A., Oliveira, L., Martins, L. E. B., Gallo-Junior, L., & Catai, A. M. (2005). Effects of age and physical activity on the autonomic control of heart rate in healthy men. Brazilian Journal of Medical and Biological Research, 38(9), 1331–1338. https://doi.org/10.1590/S0100-879X2005000900007
Millar, P. J., Rakobowchuk, M., Adams, M. M., Hicks, A. L., McCartney, N., & MacDonald, M. J. (2009). Effects of short-term training on heart rate dynamics in individuals with spinal cord injury. Autonomic Neuroscience, 150(1–2), 116–121. https://doi.org/10.1016/j.autneu.2009.03.012
Montano, N., Porta, A., Cogliati, C., Costantino, G., Tobaldini, E., Casali, K. R., & Iellamo, F. (2009). Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neuroscience & Biobehavioral Reviews, 33(2), 71–80. https://doi.org/10.1016/j.neubiorev.2008.07.006
Noteboom, J. T., Barnholt, K. R., & Enoka, R. M. (2001). Activation of the arousal response and impairment of performance increase with anxiety and stressor intensity. Journal of Applied Physiology. https://doi.org/10.1152/jappl.2001.91.5.2093
Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82–87. https://doi.org/10.1063/1.166141
Pereira, B. R. R., Mendoza, I. Y. Q., Couto, B. R. G. M., Ercole, F. F., & Goveia, V. R. (2014). Artroplastia do quadril: prevenção de infecção do sítio cirúrgico. Revista Sobecc, 19(4), 181–187. https://doi.org/10.5327/Z1414-4425201400040002
Physical status: The use and interpretation of anthropometry. (1995). In World Health Organization - Technical Report Series. https://doi.org/10.1093/ajcn/64.5.830
Power, M., & Dalgleish, T. (2007). Cognition and Emotion. In Cognition and Emotion: From Order to Disorder: Second Edition. Psychology Press. https://doi.org/10.4324/9780203934487
Rajendra, A. U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031–1051. https://doi.org/10.1007/s11517-006-0119-0
Roest, A. M., Martens, E. J., de Jonge, P., & Denollet, J. (2010). Anxiety and Risk of Incident Coronary Heart Disease. A Meta-Analysis. Journal of the American College of Cardiology. https://doi.org/10.1016/j.jacc.2010.03.034
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674. https://doi.org/10.1109/21.97458
Sakaki, M. H., Matsumura, B. A. R., Dotta, T. D. A. G., Pontin, P. A., Santos, A. L. G. dos, & Fernandes, T. D. (2014). Epidemiologic study of ankle fractures in a tertiary hospital. Acta Ortopédica Brasileira, 22(2), 90–93. https://doi.org/10.1590/1413-78522014220200874
Sakakibara, M. (2018). Clinical application of heart rate variability. The Proceedings of the Annual Convention of the Japanese Psychological Association. https://doi.org/10.4992/pacjpa.82.0_tws-011
Shibeshi, W. A., Young-Xu, Y., & Blatt, C. M. (2007). Anxiety Worsens Prognosis in Patients With Coronary Artery Disease. Journal of the American College of Cardiology. https://doi.org/10.1016/j.jacc.2007.03.007
Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV - Heart rate variability analysis software. Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2013.07.024
Task Force of the ESC-NASPE. (1996). Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation. https://doi.org/10.1161/01.CIR.93.5.1043
Tulppo, M. P., Hughson, R. L., Mäkikallio, T. H., Airaksinen, K. E. J., Seppänen, T., & Huikuri, H. V. (2001). Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. American Journal of Physiology-Heart and Circulatory Physiology, 280(3), H1081–H1087. https://doi.org/10.1152/ajpheart.2001.280.3.H1081
Tulppo, M. P., Kiviniemi, A. M., Hautala, A. J., Kallio, M., Seppänen, T., Mäkikallio, T. H., & Heikki, H. V. (2005). Physiological background of the loss of fractal heart rate dynamics. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.104.523712
Vanderlei, L. C. M., Pastre, C. M., Júnior, I. F. F., & de Godoy, M. F. (2010). Fractal correlation of heart rate variability in obese children. Autonomic Neuroscience, 155(1–2), 125–129. https://doi.org/10.1016/j.autneu.2010.02.002
Vanderlei, L. C. M., Silva, R. A., Pastre, C. M., Azevedo, F. M., & Godoy, M. F. (2008). Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Brazilian Journal of Medical and Biological Research, 41(10), 854–859. https://doi.org/10.1590/S0100-879X2008005000039
Vargas, T. V. P., Maia, E. M., & Dantas, R. A. S. (2006). Patient feelings during the preoperative period for cardiac surgery. Revista Latino-Americana de Enfermagem, 14(3), 383–388. https://doi.org/10.1590/S0104-11692006000300012
Webber, C. L., & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76(2), 965–973. https://doi.org/10.1152/jappl.1994.76.2.965
Wessel, N., Marwan, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2001). Recurrence quantification analysis to characterise the heart rate variability before the onset of ventricular tachycardia. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/3-540-45497-7_45
Wijngaarden, M. A., Pijl, H., van Dijk, K. W., Klaassen, E. S., & Burggraaf, J. (2013). Obesity is associated with an altered autonomic nervous system response to nutrient restriction. Clinical Endocrinology, n/a-n/a. https://doi.org/10.1111/cen.12100
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2011). Data Mining: Practical Machine Learning Tools and Techniques. In Data Mining: Practical Machine Learning Tools and Techniques. Elsevier. https://doi.org/10.1016/C2009-0-19715-5
Yeh, R. G., Chen, G. Y., Shieh, J. S., & Kuo, C. D. (2010). Parameter investigation of detrended fluctuation analysis for short-term human heart rate variability. Journal of Medical and Biological Engineering. https://doi.org/10.5405/jmbe.30.5.02
Zbilut, J. P., & Webber, C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171(3–4), 199–203. https://doi.org/10.1016/0375-9601(92)90426-M
Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Francielly V. Correa; Aline M. Diolindo Meneses; Sara P. Carvalho; Antônio P. Mendes; Laurita dos Santos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.