Cuello de botella de la producción agrícola brasileña: Colapso de silos verticales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.17253

Palabras clave:

Silos metálicos de paredes delgadas; Falla por pandeo; Interacción entre el material a granel y la pared del silo; Descarga excêntrica; Ruptura.

Resumen

En la coyuntura económica mundial, el vertiginoso crecimiento de la producción y las exportaciones en los sectores agroindustrial y alimentario de Brasil consolida cada vez más al país como un actor clave del sector. La implementación de unidades de almacenamiento en predios agrícolas y plantas industriales es una premisa necesaria para mantener la competitividad del país en el escenario mundial. Los silos verticales se presentan como soluciones alternativas. Sin embargo, una gran cantidad de silos existentes no presentan condiciones ideales de operación debido a un conocimiento insuficiente de presiones que varían en el tiempo y espacio interno, flujo y variables que afectan el comportamiento de los productos almacenados. Esta situación ha contribuido a accidentes y derrumbes en silos. Con esta creciente demanda de capacidad de almacenamiento en silos, ha cobrado importancia una comprensión profunda del comportamiento estructural, la prevención de fallas y la optimización de los componentes estructurales. Este trabajo, por lo tanto, tuvo como objetivo presentar algunos hechos ocurridos en el país en los últimos años y abordar las principales causas de fallas estructurales, destacando las fallas directamente relacionadas con el tipo de flujo ocurrido dentro del silo; carga y / o descarga excéntrica; alteración de las propiedades de los productos almacenados (peso específico, ángulo de fricción interno efectivo, ángulo de fricción con la pared) e inestabilidad de las cantidades. Se concluye que gran cantidad de accidentes en estas estructuras podrían evitarse o mitigarse con un conocimiento previo, por parte de los diseñadores y responsables de la operación, sobre los fenómenos más importantes en silos.

Citas

Alonso-Miravalles, L., Zannini, E., Bez, J., Arendt, E. K. & O'Mahony, J. Á. (2020). Physical and flow properties of pseudocereal-based protein-rich ingredient powders. Journal of Food Engineering, 281:109973.

AS- Australian Standart. (1996) AS 3774: Loads on bulks containers.

ASAE - American Society of Agricultural Engineers (1988). “Loads exerted by freeflowing grain on bins.” ANSI/ASAE EP433 DEC 1988 (R2001), St. Joseph, MI.

Baroni, G. D., Benedeti, P. H. & Seidel, D. J. (2017). Cenários prospectivos da produção e armazenagem de grãos no Brasil. Revista Thema, 14(4), 55-64.

Batista, C. S. Estudo teórico e experimental do fluxo de sólidos particulados em silos verticais. Campina Grande: UFCG. 81p. Tese (Doutorado em Engenharia de Processos), 2009.

Cabrejos Marín, F. (2018). Gravity reclaim stockpiles: What you need to know. Particulate Science & Technology, 36(4), 473–480.

Calderón, C. A., Olivares, M. C. V., Uñac, R. O. & Vidales, A. M. (2017). Correlations between flow rate parameters and the shape of the grains in a silo discharge. Powder Technology, 320, 43-50.

Calil Júnior, C. & Cheung, A. B. (2007). Silos: Pressões, fluxo, recomendações para o projeto e exemplos de cálculo. 232p.

Calil, C.J. (1982). Sobrepresiones en las Paredes de los Silos para almacenamiento de Productos Pulverulentos Cohesivos. Tese (Doutoramento) - Escola Técnica Superior de Engenheiros Industriais de Barcelona, Universidade Politécnica de Barcelona.

Calil Júnior, C. (1990). Recomendações de fluxo e de cargas para o projeto de silos verticais. Tese (Livre Docência) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

Canal Rural. (2016). Homem é soterrado após desabamento de silo em Mato Grosso. https://www.canalrural.com.br/noticias/homem-soterrado apos-desabamento-silo-mato-grosso-64848/.

Cao, Q. & Zhao, Y. (2017). Buckling design of large steel silos with various slendernesses. Journal of Zhejiang University-SCIENCE (Applied Physics & Engineering), 18(4), 282-305.

Chen, X., Xu, Y., Lu, H. & Guo, X. (2018). Effect of the moisture content of straw on the internal friction angle of a granular biomass–coal system, Fuel, 215, 266-271.

Cheung, A. B., Calil Júnior, C., & Bertocini, S. R. (2015). Investigação estrutural de silos metálicos e de concreto no Brasil. In Anais CONPAT.

ClickPB. (2018). Silo de milho em fábrica de Campina Grande rompe e deixa um funcionário morto após soterramento. https://www.clickpb.com.br/paraiba/silo-de-milho-rompe-e-deixa-funcionarios-soterrados-em-fabrica-de-campina-grande-244527.html

Colonnelo, C. & Kramár, M. (2018). Dynamics of silo deformation under granular discharge. Physical Review E. 98(5),052902.

CONAB - Companhia Nacional de Abastecimento (2021) Acompanhamento safra brasileira de grãos, v.8– Safra 2020/21, n. 4 - Quarto levantamento, 1-85, https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos.

Deckers, H. P. F. (2014). Estudo teórico de pressões em silos esbeltos prismáticos com descarga excêntrica. UFLA. 146 p. Tese de Doutorado.

Dogangun, A., Karaca, Z., Durmus, A. M. & ASCE, H. S. (2009). Cause of Da.mage and Failures in Silo Structures. Journal of Performance of Constructed Facilities, 23(2), 65-71.

EN 1991-4: EUROCODE 1. Actions on structures - Part 4: Silos and tanks. European Committee for Normalisation. 108 p.

Fürll, C. & Hoffmann, T. (2015). Assessment of the flow properties of crushed grain products depending on the granulometric condition. Agricultural Engineering International, 17(4), 377–386.

Gaucha ZH. (2021). Homem morre soterrado em silo de grãos, em Ipê. Available in: https://gauchazh.clicrbs.com.br/pioneiro/geral/noticia/2021/01/homem morre-soterrado-em-silo-de-graos-em-ipe-ckk3y8fex000o019wqk0x7omt.html .

Guo, Z., Shan, Z., Du, D., Zhao, M. & Zhang, M. (2018). Experimental investigation on the flow properties of sand granules in the process of sand mold printing. Rapid Prototyping Journal, 24(9), 1599-1608.

Hotala, E., Skotny, L., Kuśnierek, M. & Boniecka, J. (2016). Experimental investigations on the resistance of vertical stiffeners of steel silos shells made of corrugated sheets. Boca Raton: Crc Press-Taylor & Francis Group, 499-506.

Iqbal, T. & Fitzpatrick, J. J. (2006). Effect of storage conditions on the wall friction characteristics of three food powders. Journal of Food Engineering, 72(3), 273-280.

Iwicki, P., Rejowski, K. & Tejchman, J. (2015). Stability of cylindrical steel silos composed of corrugated sheets and columns based on FE analyses versus Eurocode 3 approach. Engineering Failure Analysis, 57(1), 444-469.

Jager, P. D., Bramante, T. & Luner, P. E. (2015). Assessment of pharmaceutical powder flowability using shear cell‐based methods and application of Jenike's methodology. Journal of Pharmaceutical Sciences, 104(11), 3804-3813.

Jansseune, A. W. & Belis, J. (2015). Elastic failure of locally supported silos with U-shaped longitudinal stiffeners. KSCE J Civ Eng, 19, 1041–1049.

Jenike, A. W. (1964). Storage and flow of silos. Salt Lake City. University of Utah. Bulletin 123. Engineering Experiment Station.

Kobyłka, R., Horabik, J. & Molenda, M. (2017). Numerical simulation of the dynamic response due to discharge initiation of the grain silo. International Journal of Solids and Structures, 106, 27-37.

Kobyłkam R., Molenda, M. & Horabik, J. (2020). DEM simulation of the pressure distribution and flow pattern in a model grain silo with an annular segment attached to the wall. Biosystems Engineering, 193, 75-89.

Liu, Y., Guo, X., Lu, H. & Gonga, X. (2015). An investigation of the effect of particle size on the flow behavior of pulverized coal. Procedia Engineering, 102, 698 – 713.

Livaoglu, R. R. & Durmus, A. (2016). A simplified approximation for seismic analysis of silo–bulk material system. Bull Earthquake Eng, 14,863–887.

Lobato. J. C. M., F. Mascarenhas. F. P., Mesquita. A. L. A. & Mesquita. A. L. A. (2016). Conical Hopper Design for Mass Flow – Case of red mud. Holos. 2, 120 -131.

Lopes Neto, J. O., Nascimento, J. W. B. & Fank, M. Z. (2014). Forças verticais e de atrito em silos cilíndricos com fundo plano. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(6),652–657.

Lopes Neto, J. P. & Nascimento, J. W. B. (2013). Características de fluxo e projeto de tremonhas cônicas em silos verticais. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(3), 339-345.

Lopes Neto, J. P. & Nascimento, J. W. B. (2018). Desastres com silos verticais no Brasil. Uma breve coletânea de acontecimetnos e suas causas. Congresso Técnico Científico da Engenharia e da Agronomia - CONTECC'2018 - Maceio - AL.

Lopes Neto, J. P. (2009). Análise teórico experimental das forças verticais e de atrito em silos cilíndricos. Engenharia de Processos, Universidade Federal de Campina Grande. Tese de doutorado.

Lopes Neto, J. P., Nascimento, J. W. B. do, Silva, V. R. da, & Lopes, F. F. de M. (2007). Propriedade de fluxo e característica de escoabilidade de rações avícolas para dimensionamento de silos. Ciência e Agrotecnologia, 31(3), 851-859.

Lopes Neto, J., Nascimento, J. W. B. do, & Fank, M. Z. (2014). Forças verticais e de atrito em silos cilíndricos com fundo plano. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(6), 652–657.

Ludke, M. & Andre, M. E. D. A. (2013). Pesquisas em educação: uma abordagem qualitativa. E.P.U.

Madrona, F. S. & Calil Junior, C. (2009). Análise das pressões em silos esbeltos com descarga excêntrica. Cadernos de Engenharia de Estruturas, 11(49), 37-56.

Maiti, R., Das, G. & Das, P.K. (2016). Experiments on eccentric granular discharge from a quasi-two-dimensional silo, Powder Technology, 301, 1054-1066.

Malagalage, A., Ratnayake, C., Saasen, A., Thomassen, T.& von-Hafenbrädl, F. O. (2018). Flow properties of drill cuttings with varying drilling fluid contente using jenike shear testing. Chemical Engineering & Technology, 41(8), 1544-1550.

Medeiros, I. F. (2012). Características de fluxo e vazão de descarga em silos verticais. Dissertação de Mestrado. Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Mehretehran, A. M. & Maleki, S. (2018). 3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action. Thin-Walled Structures, 131, 654-667.

Mellmann, J., Hoffmann, T. & Fürll, C. (2013). Flow properties of crushed grains as a function of the particle shape, Powder Technology, 249, 269-273.

Mitra, H., Pushpadass, H. A., Franklin, M., Ambrose, R. P., Ghoroi, C. & Battula, S. N. (2017). Influence of moisture content on the flow properties of basundi mix. Powder Technology, 312, 133-143.

Nascimento, J. W. B. Estudos dos silos metálicos prismáticos para fábricas de ração. São Carlos: Escola de Engenharia de São Carlos – Universidade de São Paulo, 152p. Tese de Doutorado, 1996.

O Bem Dito. (2017). Trabalhador morre soterrado por farelo de trigo após silo desabar. Available in: https://www.obemdito.com.br/cotidiano/trabalhador morre-soterrado-por-farelo-de-trigo-apos-silo-desabar/9863/. Access on: 03 of january 2021.

Oginni, O. & Fasina, O. (2018). Theoretical estimation of silo design parameters for fractionated loblolly pine grinds – Moisture content and particle size effects. Industrial Crops and Products, 123, 379-385.

Park, H. W., Kim, S. T., Choung, M. G., Han, W.‐Y. & Yoon, W. B. (2016). Flow Behavior of Adzuki Bean Flour. Journal of Food Process Engineering, 39(4), 366-376.

Paula, W. C. (2020). Influência da geometria de tremonhas concêntricas e excêntricas nos esforços de silos esbeltos metálicos UFLA. Tese de Doutorado.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Portal Tchê. (2019). Jovem morre após desabamento de silo em Passo Fundo. https://portaltche.com.br/arquivos/16024.

Ravenet, J. (1983) - Silos: flujo de vaciado de sólidos, formacion de bovedas. Editores Técni-cos Asociados, 330p.

Rejowski, K., & Iwicki, P. (2016). Simplified stability analysis of steel cylindrical silos with corrugated walls and vertical columns. 13th International Conference on Metal Structures (ICMS), 525-532.

Ripp, M., Debele, Z. A., & Ripperger, S. (2015). Determination of Bulk Flow Property of tef Flour and Seed and Design of a Silo. Particulate Science & Technology, 33(5), 494–502.

Rodrigues, A. C. A. (2019). Estudo da instabilidade das colunas (montantes) de silos metálicos cilíndricos de chapas onduladas. Dissertação de Mestrado, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.

Sadowski, A. J. & Rotter, J. M. (2011). Buckling of very slender metal silos under eccentric discharge, Engineering Structures, 33(4), 1187-1194.

Sielamowicz, I., Czech, M. & Kowalewski, A. T. (2010). Empirical description of flow parameters in eccentric flow inside a silo model, Powder Technology, 198(3), 381-394.

Siliveru, K., Ambrose, R. P. K., Vadlani P. V. (2017). Significance of composition and particle sizeon the shear flow properties of wheat flour. J Sci Food Agric, 97, 2300–2306.

Silva, F. S., Correa, P. C., Calil Junior, C. & Gomes, F. C. (2011). Análise dos coeficientes de atrito estático e dinâmico de grãos de café com pergaminho, determinados em diferentes equipamentos, teores de água e materiais de parede. Revista Brasileira de Produtos Agroindustriais, 13(2), 143-156.

Silva, L. A. (2019). Efeito de inserts no padrão de fluxo e vazão mássica em silo vertical esbelto para farinha de milho flocada. Dissertação de Mestrado. Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Sondej, M., Iwicki, P., Tejchman, J. & Wójcik, M. (2015). Critical assessment of Eurocode approach to stability of metal cylindrical silos with corrugated walls and vertical stiffeners, Thin-Walled Structures, 95, 335-346.

Souza, G. F. M. V., Miranda, R. F.& Barrozo, M. A. S. (2015). Soybean (Glycine max L. Merrill) Seed Drying in Fixed Bed: Process Heterogeneity and Seed Quality. Drying Technology, 33(14), 1779-1787.

Stasiak, M., Molenda, M., Bańda, M. & Gondek, E. (2015). Mechanical properties of sawdust and woodchips. Fuel, 159, 900-908.

Tangará em foco. (2020). Vídeo: trabalhador filma momento em que silo com milho estoura em Mato Grosso. https://tangaraemfoco.com.br/2020/08/15/video-trabalhador-filma-momento-em-que-silo-com-milho-estoura-em-mato-grosso.html.

Tascón, A. (2017). Design of silos for dust explosions: Determination of vent area sizes and explosion pressures. Engineering Structures, 134, 1-10.

Zaccari, N. & Cudemo, M. (2016). Steel silo failure and reinforcement proposal, Engineering Failure Analysis, 63, 1-11.

Descargas

Publicado

09/07/2021

Cómo citar

DORNELAS, K. C. .; AYRES, G. D. J. .; RODRIGUES, H. C. S. .; NASCIMENTO, R. T. do .; LOPES NETO, J. P.; NASCIMENTO, J. W. B. do . Cuello de botella de la producción agrícola brasileña: Colapso de silos verticales. Research, Society and Development, [S. l.], v. 10, n. 8, p. e14510817253, 2021. DOI: 10.33448/rsd-v10i8.17253. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17253. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas