Efecto de la temperatura y del tiempo del tratamiento térmico de envejecimiento en la microestructura y la resistencia a la corrosión del acero inoxidable dúplex UNS S31803
DOI:
https://doi.org/10.33448/rsd-v10i8.17369Palabras clave:
Acero inoxidable dúplex; Corrosión; Transformación de fase; Envejecimiento.Resumen
Los aceros inoxidables dúplex (AID) corresponden a una clase de acero en la que la microestructura está compuesta básicamente por las fases ferrita y austenita. Y debido al carácter metaestable de la ferrita, pueden ocurrir transformaciones en las fases asociadas durante los tratamientos térmicos como la línea alfa y sigma, lo que puede conducir a una disminución de la resistencia a la corrosión. Así, el objetivo de este trabajo fue evaluar la influencia de los tratamientos térmicos de solubilización a 1100°C durante 30min y envejecimiento a 500 y 600°C durante 1, 3 y 12h, sobre la microestructura y resistencia a la corrosión de AID UNS S31803. Los aceros se caracterizaron por SEM, EDS, DRX, dureza, micro dureza y análisis térmico, y se observó que los aceros tratados térmicamente por envejecimiento presentaban una fracción volumétrica de ferrita menor que el acero solubilizado. Y los aceros envejecidos a 500 ° C durante 1h presentaron la fase de línea alfa dispersa en ferrita y los aceros envejecidos a 600 ° C durante 12h presentaron las fases de línea alfa, sigma y chi. En los ensayos de reactivación potencio dinámica de doble ciclo en una solución de H2SO4 0,5 M y KSNC 0,01M, se observó que no se produjo sensibilización. Y en las pruebas de polarización potencio dinámica cíclica, en una solución de NaCl al 3,5%, se encontró que la precipitación de la fase de línea alfa no cambiaba la resistencia a la corrosión, pero la fase sigma reducía la resistencia a la corrosión.
Citas
Alvarez-Armas, I. & Degallaix-Moreuil, S. (2009). Duplex Stainless Steels. Hoboken: Wiley.
Appleton, A. (2019). Microstructure Analysis for the Detection of Intermetallic Phases Predictive of Toughness and Corrosion Resistance in Duplex and Lean Duplex Steels. 100 Years of E04 Development of Metallographic Standards, 166-182.
Arturo, G. R. M., Hugo, L. M. V., Rafael, G. H., Egberto, B. B. & Antonio, G. S. J. (2015). Electrochemical Characterization of AISI 2205 Duplex Stainless Steel Welded Joints with Electromagnetic Interaction. Procedia Materials Science, 8, 950-958.
Berecz, T., Fazakas, É., Mészáros, I. & Sajó, I. (2015). Decomposition kinetics of ferrite in isothermally aged SAF 2507-type duplex stainless steel. Journal of Materials Engineering and Performance, 24(12), 4777-4788.
Cavalcanti, D. A., Muterlle, P. V. & Reinke, G. (2019). Effect of Sigma Phase Precipitated at 850 °C on Corrosion Behaviour of UNS S82441 Duplex Stainless Steel. Matéria (Rio de Janeiro), 24(3), 1-11.
Chail, G. & Kangas, P. (2016). Super and hyper duplex stainless steels: structures, properties and applications. Procedia Structural Integrity, 2, 1755-1762.
Cronemberger, M. E. R. et al. (2014). Study of cooling rate influence on SAF 2205 duplex stainless steel solution annealed. Materials Science Forum, 802, 398-403.
Cronemberger, M. E. R., Nakamatsu, S., Rovere, C. A. D., Kuri, S. E. & Mariano, N. A. (2015). Effect of cooling rate on the corrosion behavior of As-Cast SAF 2205 duplex stainless steel after solution annealing treatment. Materials Research, 18(2),138-142.
Dille, J. et al. (2017). Microstructural evolution during aging at 800 °C and its effect on the magnetic behavior of UNS S32304 lean duplex stainless steel. Journal of Magnetism and Magnetic Materials, 426, 102-107.
Haupt, W., Silva, L. E., Falcade, T., Santos, A. C. & Reguly, A. (2019). Effect of ageing time on the toughness and the corrosion properties of duplex stainless steel UNS S31803. Materials Research, 22(6), 1-14.
Hilders, O. A., Zambrano, N. & Ochoa, J. L. M. (2018). Microstructural evolution and mechanical property-fractal behavior relations of aged super duplex stainless steel. Original Research Article, 27(2), 83-107.
Jinlong, L., Tongxiang, L., Chen, W. & Limin, D. (2015). Comparison of corrosion properties of passive films formed on coarse grained and ultrafine-grained AISI 2205 duplex stainless steels. Journal of Electro analytical Chemistry, 757, 263-269.
Kisasoz, A., Gurel, S. & Karaaslan, A. (2016). Effect of Annealing Time and Cooling Rate on Precipitation Processes in a Duplex Corrosion-Resistant Steel. Metal Science and Heat Treatment, 57(9-10), 544-547.
Koche, J. C. (2011). Fundamentos de metodologia científica: Teoria da ciência e iniciação a pesquisa. Petrópolis, RJ: Vozes.
Lacerda, J.C., Cândido, L.C. & Godefroid, L.B. (2015). Effect of volume fraction of phases and precipitates on the mechanical behavior of UNS S31803 duplex stainless steel. International Journal of Fatigue, 74, 81-87.
Li, X., Lo, K. H., Kwok, C. T., Sun, Y. F. & Lai, K.K. (2018). Post-fire mechanical and corrosion properties of duplex stainless steel: Comparison with ordinary reinforcing-bar steel. Construction and Building Materials, 174, 150-158.
Llorca-Isern, N., López-Jiménez, I., López-Luque, H., Biezma, M. V. & Roca, A. (2016). Study of the Precipitation of Secondary Phases in Duplex and Superduplex Stainless Steel. Materials Science Forum, 879, 2537-2542.
Ludke, M. & Andre, M. E. D. A. (2013). Pesquisas em educação: uma abordagem qualitativa. São Paulo, SP: E.P.U.
Majid, M. & Shahi, A. S. (2020). Influence of intermetallic precipitation on metallurgical, mechanical and pitting behavior of AISI 2205 duplex stainless steel welded joints. Materials Research Express, 6(12), 1-23.
Mandal, A. (2016). Processing-microstructure-microtexture-property correlation of Duplex Stainless Steels (Thesis). Indian Institute of Technology, Kharagpur, Indian.
Marques, I. J., Silva, F. J. & Santos, T. F. A. (2020). Rapid precipitation of intermetallic phases during isothermal treatment of duplex stainless-steel joints produced by friction stir welding. Journal of Alloys and Compounds, 820, 153170.
Martins M. C. & Hara L.C. (2004). Caracterização microestrutural e comportamento à corrosão do aço inox super duplex ASTM A890 GR 6A. In: 59° Congresso Anual da ABM; São Paulo, SP, Brazil.
Matias, J. V. S., Tavares, S. S. M., Pardal, J. M. & Ribeiro, R. S. A. (2017). Embrittlement and Corrosion Decay of a Cast Duplex Stainless Steel. Materials Research, 20(2), 279-283.
Mehta, M., Jadhav, P., Shaikh, A., Kumar, S. & Kirwai, S. (2019). Effect of Solution Treatment on Microstructure and Mechanical Properties of 2205 Duplex Stainless Steel. International Journal of Materials, Mechanics and Manufacturing, 7(6), 254-258.
Mohammed, A. M., Shrikrishna, K. A. & Sathiya, P. (2016). Effects of post weld heat treatment on friction welded duplex stainless steel joints. Journal of Manufacturing Processes, 21, 196-200.
Morais, L. C & Magnabosco, R. (2017). Experimental investigations and DICTRA® simulation of sigma phase formation in a duplex stainless steel. Calphad, 58, 214-218.
Nithin R. P., Sekar, K. & Joseph, M. A. (2019). Effect of temperature on microstructure evolution and localized corrosion resistance of high tungsten hyper duplex stainless steel. Materials Research Express, 6(11), 116557.
Ogawa, K. & Osuki, T. (2020). Modelling of Sigma Phase Precipitation in Super Duplex Stainless Steel Weld Metal. Isij International, 60(5), 1016-1021.
Örnek, C., Burke, M., Hashimoto, T., Lim, J. & Engelberg, D. (2017). 475°C Embrittlement of Duplex Stainless Steel - A Comprehensive Microstructure Characterization Study. Materials Performance and Characterization, 6(3), 409-436.
Örnek, C. & Engelberg, D. l. (2015). SKPFM measured Volta potential correlated with strain localization in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel. Corrosion Science, 99, 164-171.
Paulraj, P. & Garg, R. (2015). Effect of intermetallic phases on corrosion behavior and mechanical properties of duplex stainless steel and super-duplex stainless steel. Advances in Science and Technology Research Journal, 9, 87-105.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica (1 ed.). Santa Maria, RS: UFSM, NTE.
Powar, A., Gujar, A., Manthani, N., Pawar, V. & Singh, R. (2017). Effect of Secondary Phase Precipitation on Impact Toughness of Duplex Stainless Steel. Materials Science Forum, 889, 138-142.
Rezende, S. C., Dainezi, I., Apolinario, R. C., Sousa, L. L. & Mariano, N. A. (2019). Influence of molybdenum on microstructure and pitting corrosion behavior of solution-treated duplex stainless steel in a lithium chloride solution. Materials Research, 22(1), 1-11.
Rezende, S.C. et al. (2018). Effect of solution annealing time on the microstructure and corrosion resistance of duplex stainless steel. Materials Science Forum, 930, 374-379.
Rivolta, B., Gerosa, R. & Tavasci, F. (2018). The dilatometric technique for studying sigma phase precipitation kinetics in F55 steel grade. Journal of Thermal Analysis and Calorimetry, 132(2), 869-877.
Sáenz, L. et al. (2020). Duplex Stainless Steel Subjected to Normalized Thermal Treatment. Key Engineering Materials, 834, 103-109.
Santos, D. C. & Magnabosco, R. (2015). Kinetic Study to Predict Sigma Phase Formation in Duplex Stainless Steels. Metallurgical and Materials Transactions A, 47(4), 1554-1565.
Sicupira, D. C., Cardoso Junior, R., Bracarense, A. Q., Frankel, G. S. & Lins, V. F. C. (2016). Electrochemical study of passive films formed on welded lean duplex stainless steel. Materials and Corrosion, 68(6), 604-612.
Silva, E. et al. (2016). Classification of Induced Magnetic Field Signals for the Microstructural Characterization of Sigma Phase in Duplex Stainless Steels. Metals, 6(7), 164-180.
Silva, R. et al. (2016). Effect of thermal aging at 475 °C on the properties of lean duplex stainless steel 2101. Materials Characterization, 114, 211-217.
Valeriano, L. C., Correa, E. O., Mariano, N. A., Robin, A. L. M. & Machado, M. A. G. T. C. (2019). Influence of the Solution-Treatment Temperature and Short Aging Times on The Electrochemical Corrosion Behaviour of Uns S32520 Super Duplex Stainless Steel. Materials Research, 22(4), 1-7.
Verma, J. & Taiwade, R. V. (2017). Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments A review. Journal of Manufacturing Processes, 25, 134-152.
Warren, A. D. et al. (2015). Quantification of sigma-phase evolution in thermally aged 2205 duplex stainless steel. Journal of Materials Science, 51(2), 694-707.
Xiang, H., Liu , C., Deng, L. & Zheng, K. (2019). Effect of Aging Temperature on the Microstructure and Properties of Economical Duplex Stainless Steel. Materials, 12(13), 2085.
Zeng, H., Yang, Y., Xu, R., Xin, S. & Li, M. (2019). Pitting corrosion resistance of sensitized type 2205 duplex stainless steel in hot concentrated seawater. Journal of Solid State Electrochemistry, 23, 2793-2801.
Zhang, Z. et al. (2017). Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints. Applied Surface Science, 394, 297-314.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Isabela Dainezi; Spyridion Haritos Borges; Luciola Lucena de Sousa; Neide Aparecida Mariano
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.