Influencia del pH del agua en la hepato y nefrotoxicidad de la intoxicación crónica por cadmio en ratas Wistar

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i9.17753

Palabras clave:

Cadmio; Acidificación; Riñón; Hígado; Toxicidad.

Resumen

Introducción: El cadmio es un metal pesado que se encuentra en el medio ambiente y se utiliza industrialmente; sin embargo, también causa efectos hepato y nefrotóxicos. Objetivo: Evaluar el efecto del pH del agua potable sobre la hepato y nefrotoxicidad causada por intoxicación crónica por cadmio. Material y métodos: Se utilizaron 90 ratas albinas Wistar macho adultas divididas en 6 grupos (n = 15): GC5 recibió una solución de cloruro de cadmio en agua potable con un pH ácido (pH 5,0); GC7 recibió una solución de cloruro de cadmio (400 mg / L) en agua potable con pH neutro (agua pH 7.0); GC8 recibió una solución de cloruro de cadmio en agua con un pH alcalino (pH 8.0); GWC5 recibió agua potable con un pH ácido (pH 5,0); GWC7 recibió agua potable con pH neutro (pH 7,0); GWC8 recibió agua potable con un pH alcalino (pH 8.0). Los animales se sacrificaron 6 meses después del inicio del experimento. Realizamos pruebas de función hepática y renal y realizamos histopatología hepática y renal. Resultados: El agua con pH ácido provocó alteraciones en ALP, ALT y urea en animales expuestos a cadmio (P<0.05). En el hígado, la mayoría de los animales de los grupos GC7 (57,1%) y GC5 (53,3%) mostraron esteatosis microvesicular difusa, mientras que otros grupos no mostraron esteatosis (P> 0,05). En el riñón, la mayoría de los animales de los grupos GC7 (78,6%) y GWC5 (71,4%) mostraron degeneración hidrópica tubular; sin embargo, estos datos solo fueron estadísticamente diferentes del grupo GWC7 (P <0.05). Conclusión: La exposición al cadmio en agua con un pH ácido condujo a elevaciones más altas de ALP, AST y urea séricos, lo que sugiere que el pH del agua potable influye en los efectos hepato y nefrotóxicos de este metal pesado.

Citas

Bano, N., & Najam, R. (2019). Histopathological and biochemical assessment of liver damage in albino Wistar rats treated with cytotoxic platinum compounds in combination with 5-fluorouracil. Archives of Medical Science, 15(4), 1092–1103. https://doi.org/10.5114/aoms.2019.86064

Brzóska, M. M., Moniuszko-Jakoniuk, J., Piłat-Marcinkiewicz, B., & Sawicki, B. (2003). Liver and kidney function and histology in rats exposed to cadmium and ethanol. Alcohol and Alcoholism (Oxford, Oxfordshire), 38(1), 2–10. https://doi.org/10.1016/j.sjbs.2013.02.004.

Castro-González, M. I., & Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26(3), 263–271. https://doi.org/10.1016/j.etap.2008.06.001

Castro-Silva, E., & Fregoneze, J. (2010). Efeitos de metais pesados sobre o controle central do equilíbrio hidroeletrolítico. In Revista de Ciências Médicas e Biológicas (1, 116–123). http://www.portalseer.ufba.br/index.php/cmbio/article/view/4249

Chung, S., Chung, J. H., Kim, S. J., Koh, E. S., Yoon, H. E., Park, C. W., Chang, Y. S., & Shin, S. J. (2014). Blood lead and cadmium levels and renal function in Korean adults. Clinical and Experimental Nephrology, 18(5), 726–734. https://doi.org/10.1007/s10157-013-0913-6

Cunha, K. P. V. N., Clístenes, W. A. P., Rejane, M. M., Accioly, A. M. A., & Silva, A. J. (2008). Disponibilidade, acúmulo e toxidez de cádmio e zinco em milho cultivado em solo contaminado. Revista Brasileira de Ciência Do Solo, 32(3), 1319–1328. https://doi.org/10.1590/S0100-06832008000300039

El-Refaiy, A. I., & Eissa, F. I. (2013). Histopathology and cytotoxicity as biomarkers in treated rats with cadmium and some therapeutic agents. Saudi Journal of Biological Sciences, 20(3), 265–280. https://doi.org/10.1016/j.sjbs.2013.02.004

Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics (5th ed.). SAGE Publications Ltd.

Gao, D., Xu, Z., Qiao, P., Liu, S., Zhang, L., He, P., Zhang, X., Wang, Y., & Min, W. (2013). Cadmium Induces Liver Cell Apoptosis through Caspase-3A Activation in Purse Red Common Carp (Cyprinus carpio). PLoS ONE, 8(12), e83423. https://doi.org/10.1371/journal.pone.0083423

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782

Gonick, H. C. (2008). Nephrotoxicity of cadmium & lead. The Indian Journal of Medical Research, 128(4), 335–352. http://www.ncbi.nlm.nih.gov/pubmed/19106433

Hasan, K. M. M., Tamanna, N., & Haque, M. A. (2018). Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Science and Human Wellness, 7(1), 77–82. https://doi.org/10.1016/j.fshw.2017.12.002

Järup, L., & Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208. https://doi.org/10.1016/j.taap.2009.04.020

Khalil-Manesh, F., Gonick, H. C., & Cohen, A. H. (1993). Experimental Model of Lead Nephropathy. III. Continuous Low-level Lead Administration. Archives of Environmental Health: An International Journal, 48(4), 271–278. https://doi.org/10.1080/00039896.1993.9940372

Köche, J. C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa (34th ed.). Editora Vozes.

Liu, J., Qu, W., Saavedra, J. E., & Waalkes, M. P. (2004). The nitric oxide donor, O2-vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO), protects against cadmium-induced hepatotoxicity in mice. The Journal of Pharmacology and Experimental Therapeutics, 310(1), 18–24. https://doi.org/10.1124/jpet.103.065003

Lovásová, E., Rácz, O., Cimboláková, I., Nováková, J., Dombrovský, P., & Ništiar, F. (2013). Effects of Chronic Low-Dose Cadmium Exposure on Selected Biochemical and Antioxidant Parameters in Rats. Journal of Toxicology and Environmental Health, Part A, 76(17), 1033–1038. https://doi.org/10.1080/15287394.2013.828249

Ma, N., Wu, Y., Xie, F., Du, K., Wang, Y., Shi, L., Ji, L., Liu, T., & Ma, X. (2017). Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota. Oncotarget, 8(27), 44625–44638. https://doi.org/10.18632/oncotarget.17886

Menezes, L. M., Freitas, M. P. M., & Gonçalves, T. S. (2009). Biocompatibilidade dos materiais em Ortodontia: mito ou realidade? Revista Dental Press de Ortodontia e Ortopedia Facial, 14(2), 144–157. https://doi.org/10.1590/S1415-54192009000200016

Mladenović, J., Ognjanović, B., Dorđević, N., Matić, M., Knežević, V., Stajn, A., & Saičić, Z. (2014). Protective effects of oestradiol against cadmium-induced changes in blood parameters and oxidative damage in rats. Arhiv Za Higijenu Rada i Toksikologiju, 65(1), 37–46. https://doi.org/10.2478/10004-1254-65-2014-2405

Motta, A. C. F., Migliari, D. A., Gioso, M. A., Komesu, M. C., Sala, M. A., & Lopes, R. A. (2004). The carcinogenic potential of cadmium in the palatal and gingival epithelium of rats: a morphologic and morphometric analysis. Brazilian Journal of Veterinary Research and Animal Science, 41(3), 183–188. https://doi.org/10.1590/S1413-95962004000300006

National Research Council, S. on L. A. (1995). Nutrient Requirements of Laboratory Animals. In Nutrient Requirements of Laboratory Animals: Fourth Revised Edition, 1995. National Academies Press. https://doi.org/10.17226/4758

Paiva, F. P., Maffili, V. V., & Santos, A. C. S. (2005). Curso de Manipulação de Animais de Laboratório (F. P. de Paiva, V. V. Maffili, & A. C. S. Santos (eds.); 1st ed.). Ministério da Saúde. www.bioteriocentral.ufc.br › arquivos › apostilha_manipulacao

Sabolić, I., Herak-Kramberger, C. M., & Brown, D. (2001). Subchronic cadmium treatment affects the abundance and arrangement of cytoskeletal proteins in rat renal proximal tubule cells. Toxicology, 165(2–3), 205–216. http://www.sciencedirect.com/science/article/pii/S0300483X01004504

Said Aki, E., Awad Salem, W., & Alessai, J. (2019). Toxicology in Emergency Medicine. In Essentials of Accident and Emergency Medicine. IntechOpen. https://doi.org/10.5772/intechopen.77011

Shemesh, O., Golbetz, H., KRIss, J. P., & Myers, B. D. (1985). Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int, 28, 830–838. http://www.nature.com/ki/journal/v28/n5/abs/ki1985205a.html

Souza, M. C. B., & Santos, H. C. N. (2010). Fatores Ambientais e Reprodução: Metais (chumbo e cádmio). Fundamentação da pesquisa. JBRA Assisted Reproduction, 14, 38–42. http://www.jbra.com.br/archive/JBRA_4_2010.pdf#page=38

Thomas, L. D. K., Elinder, C.-G., Tiselius, H.-G., Wolk, A., & Åkesson, A. (2013). Dietary cadmium exposure and kidney stone incidence: A population-based prospective cohort study of men & women. Environment International, 59, 148–151. https://doi.org/10.1016/j.envint.2013.06.008

WHO. (1992). Environmental Health Criteria, Cadmium. (1st ed.). World Health Organization. http://www.inchem.org/documents/ehc/ehc/ehc135.htm

Younan, S., Sakita, G. Z., Coluna, J. G. Y., Rufino, M. N., Keller, R., & Bremer‐Neto, H. (2019). Probiotic mitigates the toxic effects of potassium dichromate in a preclinical study: a randomized controlled trial. Journal of the Science of Food and Agriculture, 99(1), 183–190. https://doi.org/10.1002/jsfa.9159

Yuan, G., Dai, S., Yin, Z., Lu, H., Jia, R., Xu, J., Song, X., Li, L., Shu, Y., & Zhao, X. (2014). Toxicological assessment of combined lead and cadmium: Acute and sub-chronic toxicity study in rats. Food and Chemical Toxicology, 65, 260–268. https://doi.org/10.1016/j.fct.2013.12.041

Zhang, J., Song, J., Zhang, J., Chen, X., Zhou, M., Cheng, G., & Xie, X. (2013). Combined Effects of Fluoride and Cadmium on Liver and Kidney Function in Male Rats. Biological Trace Element Research, 155(3), 396–402. https://doi.org/10.1007/s12011-013-9807-4

Descargas

Publicado

22/07/2021

Cómo citar

BONFIM, D. J. P. .; GARCIA, F. M. .; LAPOSY, C. B. .; GIUFFRIDA, R. .; NAI, G. A. .; BREMER-NETO, H. Influencia del pH del agua en la hepato y nefrotoxicidad de la intoxicación crónica por cadmio en ratas Wistar. Research, Society and Development, [S. l.], v. 10, n. 9, p. e12210917753, 2021. DOI: 10.33448/rsd-v10i9.17753. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17753. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas