Terapia potencial con el inhibidor de los receptores de TGF-β LY2109761 para el carcinoma oral de células escamosas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i9.18396

Palabras clave:

Migración celular; Citoesqueleto; LY2109761; Carcinoma oral de células escamosas; SCC-4.

Resumen

Una forma de intentar controlar el carcinoma oral de células escamosas es invertir en nuevas terapias centradas en la biología molecular de los receptores y sus vías de señalización intracelular. Este estudio tuvo como objetivo evaluar el efecto de LY2109761 (un inhibidor de los receptores de TGF-β) sobre la migración celular en el carcinoma oral de células escamosas in vitro. El citoesqueleto de actina del control de células SCC-4 y LY2109761 (1, 5 y 10 µM) tratados en Matrigel tridimensional se analizaron utilizando microscopía láser confocal. Se contaron las células de control y tratadas con LY2109761 (1, 5 y 10 µM) que migraron a través de la membrana de los ensayos de migración celular tridimensional, la significancia fue p <0,05. Se observaron células de control con citoplasma voluminoso, corteza celular conservada y citoesqueleto de actina bien desarrollado con filamentos de actina bien distribuidos. Independientemente de la concentración, las células tratadas mostraron: morfología redondeada y tamaño pequeño, citoplasma escaso, F-actina cortical menos clara que las células de control y rotura de los filamentos de actina. Las células migratorias se inhibieron mediante el tratamiento con LY2109761 [F (3, 11) = 3742, p <0,0001], de una manera dependiente de la dosis. Estos resultados sugieren que LY2109761 ejerce un efecto inhibidor sobre el citoesqueleto de actina y la migración celular en las células SCC-4, por lo tanto, es una opción terapéutica prometedora para el carcinoma oral de células escamosas.

Citas

Albini, A., & Noonan, D. M. (2010). The 'chemoinvasion' assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Curr Opin Cell Biol, 22(5), 677-689. https://doi.org/10.1016/j.ceb.2010.08.017

Blume-Jensen, P., & Hunter, T. (2001). Oncogenic kinase signalling. Nature, 411(6835), 355-365. https://doi.org/10.1038/35077225

Bu, J. Q., & Chen, F. (2017). TGF-β1 promotes cells invasion and migration by inducing epithelial mesenchymal transformation in oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci, 21(9), 2137-2144.

Capece, D., Verzella, D., Tessitore, A., Alesse, E., Capalbo, C., & Zazzeroni, F. (2017). Cancer secretome and inflammation: The bright and the dark sides of NF-κB. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2017.08.004

Chen, Y., Di, C., Zhang, X., Wang, J., Wang, F., Yan, J. F., Zhang, H. (2020). Transforming growth factor β signaling pathway: A promising therapeutic target for cancer. J Cell Physiol, 235(3), 1903-1914. https://doi.org/10.1002/jcp.29108

Clark, A. G., & Vignjevic, D. M. (2015). Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol, 36, 13-22. https://doi.org/10.1016/j.ceb.2015.06.004

Connolly, E. C., Freimuth, J., & Akhurst, R. J. (2012). Complexities of TGF-β targeted cancer therapy. Int J Biol Sci, 8(7), 964-978. https://doi.org/10.7150/ijbs.4564

Drabsch, Y., & ten Dijke, P. (2012). TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev, 31(3-4), 553-568. https://doi.org/10.1007/s10555-012-9375-7

Howell, G. M., & Grandis, J. R. (2005). Molecular mediators of metastasis in head and neck squamous cell carcinoma. Head Neck, 27(8), 710-717. https://doi.org/10.1002/hed.20222

Hunter, T. (2014). The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol, 6(5), a020644. https://doi.org/10.1101/cshperspect.a020644

Joseph, J. V., Balasubramaniyan, V., Walenkamp, A., & Kruyt, F. A. (2013). TGF-β as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol, 85(4), 478-485. https://doi.org/10.1016/j.bcp.2012.11.005

Krakhmal, N. V., Zavyalova, M. V., Denisov, E. V., Vtorushin, S. V., & Perelmuter, V. M. (2015). Cancer Invasion: Patterns and Mechanisms. Acta Naturae, 7(2), 17-28.

Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschläger, M., & Dolznig, H. (2013). In vitro cell migration and invasion assays. Mutat Res, 752(1), 10-24. https://doi.org/10.1016/j.mrrev.2012.08.001

Lehtimäki, J., Hakala, M., & Lappalainen, P. (2016). Actin Filament Structures in Migrating Cells. Handb Exp Pharmacol. https://doi.org/10.1007/164_2016_28

Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117-1134. https://doi.org/10.1016/j.cell.2010.06.011

Li, H. Y., McMillen, W. T., Heap, C. R., McCann, D. J., Yan, L., Campbell, R. M., . . . Sawyer, J. S. (2008). Optimization of a dihydropyrrolopyrazole series of transforming growth factor-beta type I receptor kinase domain inhibitors: discovery of an orally bioavailable transforming growth factor-beta receptor type I inhibitor as antitumor agent. J Med Chem, 51(7), 2302-2306. https://doi.org/10.1021/jm701199p

Loomans, H. A., & Andl, C. D. (2014). Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion. Cancers (Basel), 7(1), 70-91. https://doi.org/10.3390/cancers7010070

Neuzillet, C., Tijeras-Raballand, A., Cohen, R., Cros, J., Faivre, S., Raymond, E., & de Gramont, A. (2015). Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther, 147, 22-31. https://doi.org/10.1016/j.pharmthera.2014.11.001

Pereira, A. S. et al. (2018). Metodologia da pesquisa cientifica. [free e-book]. Santa Maria: UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Sanderson, R. J., & Ironside, J. A. (2002). Squamous cell carcinomas of the head and neck. BMJ, 325(7368), 822-827.

Sun, B. O., Fang, Y., Li, Z., Chen, Z., & Xiang, J. (2015). Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed Rep, 3(5), 603-610. https://doi.org/10.3892/br.2015.494

Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 1773(5), 642-652. https://doi.org/10.1016/j.bbamcr.2006.07.001

Yang, L. (2010). TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med, 10(4), 374-380.

Zhang, B., Halder, S. K., Kashikar, N. D., Cho, Y. J., Datta, A., Gorden, D. L., & Datta, P. K. (2010). Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology, 138(3), 969-980.e961-963. https://doi.org/10.1053/j.gastro.2009.11.004

Zhang, S., Sun, W. Y., Wu, J. J., & Wei, W. (2014). TGF-β signaling pathway as a pharmacological target in liver diseases. Pharmacol Res, 85, 15-22. https://doi.org/10.1016/j.phrs.2014.05.005

Descargas

Publicado

01/08/2021

Cómo citar

REZENDE, A. S.; CARNEIRO, A. C. D. M. .; SILVA, B. R. O. .; CARBONI, S. de S. C. M. .; CREMA, V. O. Terapia potencial con el inhibidor de los receptores de TGF-β LY2109761 para el carcinoma oral de células escamosas. Research, Society and Development, [S. l.], v. 10, n. 9, p. e54810918396, 2021. DOI: 10.33448/rsd-v10i9.18396. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18396. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias de la salud