Evaluación inflamatoria e inmunohistoquímica de materiales de reparación biocerámica después de pulpotomía: un estudio en ratas wistar
DOI:
https://doi.org/10.33448/rsd-v10i10.18480Palabras clave:
Pulpotomía; Inflamación; Ensayo de Materiales; Endodoncia.Resumen
La pulpotomía es una opción de tratamiento conservador cuya función es preservar la vitalidad pulpar en la porción radicular, con el uso de materiales biocompatibles en este tejido remanente. Este estudio tuvo como objetivo evaluar la respuesta biológica del remanente pulpar a los cementos biocerámicos restauradores Biodentine® y MTA Branco Angelus® en comparación con el hidróxido de calcio después de la pulpotomía. Se utilizaron veinticuatro ratas macho a las que se les expusieron las pulpas coronarias del primer y segundo molares y se les extrajo con una cureta afilada. El tejido pulpar restante recibió uno de los materiales experimentales: Biodentine®, MTA Angelus® o Ca (OH) 2 + agua destilada y se selló con ionómero de vidrio. Un grupo se selló directamente con ionómero de vidrio como grupo de control negativo. A los 7 y 15 días, los animales fueron sacrificados y las piezas sometidas a procesamiento histológico para evaluar el proceso inflamatorio colocándolas en HE e inmunohistoquímica (Fibronectina y Tenascina), mediante la atribución de puntajes de 1 a 4. Formación de puentes de tejido duro Se observó en tinción HE, evaluando presencia, continuidad y morfología. Los datos se sometieron a la prueba de Kruskal Wallis y Dunn (p <0,05). El análisis estadístico mostró que a los 7 días el MTA y el Ca (OH) 2 tenían una mayor continuidad del puente de tejido duro que el ionómero de vidrio (p <0,05). Biodentine® mostró mejores aspectos morfológicos en comparación con el ionómero de vidrio (p <0.05). A los 15 días, MTA y Biodentine mostraron un puente de tejido duro completo (p <0,05). Para la inmunotinción, Biodentine® obtuvo un mayor marcado que el ionómero de vidrio para fibronectina y tenascina. Biodentine®, MTA Angelus Branco e hidróxido de calcio mostraron la capacidad de inducir la mineralización según la metodología aplicada. Sin embargo, Biodentine® mostró una mejor respuesta tisular que el ionómero de vidrio y el hidróxido de calcio.
Citas
Abo El-Mal, E. O., Abu-Seida, A. M., & El Ashry, S. H. (2021). Biological evaluation of hesperidin for direct pulp capping in dogs' teeth. International journal of experimental pathology, 102(1), 32–44.
Accorinte, M., Holland, R., Reis, A., Bortoluzzi, M. C., Murata, S. S., Dezan, E., Jr, Souza, V., & Alessandro, L. D. (2008). Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. Journal of endodontics, 34(1), 1–6.
Al-Hezaimi, K., Al-Tayar, B. A., Bajuaifer, Y. S., Salameh, Z., Al-Fouzan, K., & Tay, F. R. (2011). A hybrid approach to direct pulp capping by using emdogain with a capping material. Journal of endodontics, 37(5), 667–672.
Aukhil, I., Sahlberg, C., & Thesleff, I. (1996). Basal layer of epithelium expresses tenascin mRNA during healing of incisional skin wounds. Journal of periodontal research, 31(2), 105–112.
Baldissera, E. Z., Silva, A. F., Gomes, A. P., Etges, A., Botero, T., Demarco, F. F., & Tarquinio, S. B. (2013). Tenascin and fibronectin expression after pulp capping with different hemostatic agents: a preliminary study. Brazilian dental journal, 24(3), 188–193.
Benetti, F., Gomes-Filho, J. E., de Azevedo-Queiroz, I. O., Carminatti, M., Conti, L. C., Dos Reis-Prado, A. H., de Oliveira, S., Ervolino, E., Dezan-Júnior, E., & Cintra, L. (2021). Biological assessment of a new ready-to-use hydraulic sealer. Restorative dentistry & endodontics, 46(2), e21.
Bogen, G., Kim, J. S., & Bakland, L. K. (2008). Direct pulp capping with mineral trioxide aggregate. Journal of the American Dental Association, 193(3), 305-315.
Borlina, S. C., de Souza, V., Holland, R., Murata, S. S., Gomes-Filho, J. E., Dezan Junior, E., Marion, J. J., & Neto, D. (2010). Influence of apical foramen widening and sealer on the healing of chronic periapical lesions induced in dogs' teeth. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 109(6), 932–940.
Bueno, C. R. E., Sumida, D. H., Duarte, M. A. H., Ordinola-Zapata, R., Azuma, M. M., Guimarães, G., Pinheiro, T. N., & Cintra, L. T. A. (2021). Accuracy of radiographic pixel linear analysis in detecting bone loss in periodontal disease: Study in diabetic rats. Saudi Dental Journal, in press, 1-10.
Bueno, C. R. E., Vasques, A. M. V., Cury, M. T. S., Sivieri-Araújo, G., Jacinto, R. C., Gomes-Filho, J. E., Cintra, L., & Dezan-Júnior, E. (2019). Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clinical oral investigations, 23(1), 169–177.
Bueno, C. R.E., Valentim, D., Marques, V. A., Gomes-Filho, J. E., Cintra, L. T., Jacinto, R. C., & Dezan-Junior, E. (2016). Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Brazilian oral research, 30(1), S1806-83242016000100267.
Çalışkan, M. K., & Güneri, P. (2017). Prognostic factors in direct pulp capping with mineral trioxide aggregate or calcium hydroxide: 2- to 6-year follow-up. Clinical oral investigations, 21(1), 357–367.
Çelik, B. N., Mutluay, M. S., Arıkan, V., & Sarı, Ş. (2019). The evaluation of MTA and Biodentine as a pulpotomy materials for carious exposures in primary teeth. Clinical Oral Investigations, 23(2), 661-666.
Chicarelli, L., Webber, M., Amorim, J., Rangel, A., Camilotti, V., Sinhoreti, M., & Mendonça, M. J. (2021). Effect of Tricalcium Silicate on Direct Pulp Capping: Experimental Study in Rats. European journal of dentistry, 15(1), 101–108.
Chiquet-Ehrismann R. (1990). What distinguishes tenascin from fibronectin? FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 4(9), 2598–2604.
Cosme-Silva, L., Gomes-Filho, J. E., Benetti, F., Dal-Fabbro, R., Sakai, V. T., Cintra, L., Ervolino, E., & Viola, N. V. (2019a). Biocompatibility and immunohistochemical evaluation of a new calcium silicate-based cement, Bio-C Pulpo. International endodontic journal, 52(5), 689–700.
Cosme-Silva, L., Dal-Fabbro, R., Gonçalves, L. O., Prado, A., Plazza, F. A., Viola, N. V., Cintra, L., & Gomes Filho, J. E. (2019b). Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Brazilian oral research, 33, e060.
Cuadros-Fernández, C., Lorente Rodríguez, A. I., Sáez-Martínez, S. et al. (2016). Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial. Clinical Oral Investigation, 20(7), 1639–1645.
Cushley, S., Duncan, H. F., Lappin, M. J., Chua, P., Elamin, A. D., Clarke, M., & El-Karim, I. A. (2021). Efficacy of direct pulp capping for management of cariously exposed pulps in permanent teeth: a systematic review and meta-analysis. International endodontic journal, 54(4), 556–571.
Dammaschke, T., Gerth, H. U., Züchner, H., & Schäfer, E. (2005). Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dental materials: official publication of the Academy of Dental Materials, 21(8), 731–738.
De Rossi, A., Silva, L. A., Gatón-Hernández, P., Sousa-Neto, M. D., Nelson-Filho, P., Silva, R. A., & de Queiroz, A. M. (2014). Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. Journal of endodontics, 40(9), 1362–1369.
Dezan-Júnior, E., Bueno, C. R. E., Vasques, A. M. V., Souza, V., de Nery, M. J., Otoboni Filho, J. A., Bernabé, P. F. E., Gomes-Filho, J. E., Cintra, L. T. A., Jacinto, R. C., Sivieri-Araújo, G., & Holland, R. (2021). Influence of different obturation techniques in coronal bacterial infiltration: study in dogs. Research, Society and Development, 10(4), e11010413884.
Esmeraldo, M. R., Carvalho, M. G., Carvalho, R. A., Lima, R., & Costa, E. M. (2013). Inflammatory effect of green propolis on dental pulp in rats. Brazilian oral research, 27(5), 417–422.
Estrela, C., & Holland, R. (2003). Calcium hydroxide: study based on scientific evidences. Journal of applied oral science: revista FOB, 11(4), 269–282.
Faraco, I. M. Jr & Holland, R. (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dental traumatology : official publication of International Association for Dental Traumatology, 17(4), 163–166.
Grinnell F. (1984). Fibronectin and wound healing. Journal of cellular biochemistry, 26(2), 107–116.
Holan, G., Eidelman, E., & Fuks, A. B. (2005). Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatric dentistry, 27(2), 129–136.
Hung, C. J., Hsu, H. I., Lin, C. C., Huang, T. H., Wu, B. C., Kao, C. T., & Shie, M. Y. (2014). The role of integrin αv in proliferation and differentiation of human dental pulp cell response to calcium silicate cement. Journal of endodontics, 40(11), 1802–1809.
Koubi, G., Colon, P., Franquin, J. C., Hartmann, A., Richard, G., Faure, M. O., & Lambert, G. (2013). Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - a prospective study. Clinical oral investigations, 17(1), 243–249.
Lacativa, A. M., Loyola, A. M., & Sousa, C. J. (2012). Histological evaluation of bone response to pediatric endodontic pastes: an experimental study in guinea pig. Brazilian dental journal, 23(6), 635–644.
Laurent, P., Camps, J., & About, I. (2012). Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. International endodontic journal, 45(5), 439–448.
Leite, M. L., Soares, D. G., Anovazzi, G., Anselmi, C., Hebling, J., & de Souza Costa, C. A. (2021). Fibronectin-loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. Journal of endodontics, 47(7), 1110–1117.
Leites, A. B., Baldissera, E. Z., Silva, A. F., Tarquinio, S., Botero, T., Piva, E., & Demarco, F. F. (2011). Histologic response and tenascin and fibronectin expression after pulp capping in pig primary teeth with mineral trioxide aggregate or calcium hydroxide. Operative dentistry, 36(4), 448–456.
Lesot, H., Begue-Kirn, C., Kubler, M. D., Meyer, J. M., Smith, A. J., Cassidy, N., & Ruch, J. V. (1993). Experimental Induction of Odontoblast Differentiation and Stimulation Durante Processos Preparativos. Cells and Materials. 3(2), 201-217.
Lima, R. V., Esmeraldo, M. R., de Carvalho, M. G., de Oliveira, P. T., de Carvalho, R. A., da Silva, F. L., Jr, & de Brito Costa, E. M. (2011). Pulp repair after pulpotomy using different pulp capping agents: a comparative histologic analysis. Pediatric dentistry, 33(1), 14–18.
Marques, M. S., Wesselink, P. R., & Shemesh, H. (2015). Outcome of Direct Pulp Capping with Mineral Trioxide Aggregate: A Prospective Study. Journal of endodontics, 41(7), 1026–1031.
Martins, C. M., Sasaki, H., Hirai, K., Andrada, A. C., & Gomes-Filho, J. E. (2016). Relationship between hypertension and periapical lesion: an in vitro and in vivo study. Brazilian oral research, 30(1), e78.
Minamikawa, H., Yamada, M., Deyama, Y., Suzuki, K., Kaga, M., Yawaka, Y., & Ogawa, T. (2011). Effect of N-acetylcysteine on rat dental pulp cells cultured on mineral trioxide aggregate. Journal of endodontics, 37(5), 637–641.
Minic, S., Florimond, M., Sadoine, J., Valot-Salengro, A., Chaussain, C., Renard, E., & Boukpessi, T. (2021). Evaluation of Pulp Repair after BiodentineTM Full Pulpotomy in a Rat Molar Model of Pulpitis. Biomedicines, 9(7), 784.
Moradi, S., Saghravanian, N., Moushekhian, S., Fatemi, S., & Forghani, M. (2015). Immunohistochemical Evaluation of Fibronectin and Tenascin Following Direct Pulp Capping with Mineral Trioxide Aggregate, Platelet-Rich Plasma and Propolis in Dogs' Teeth. Iranian endodontic journal, 10(3), 188–192.
Murray, G. G., Teixeira, L. M., Oliveira, D. L., Jacomini, L. M., & Silva, S. R. (2003). Biocompatibility evaluation of Biodentine in subcutaneous tissue of rats. International Endodontic Journal, 36(2), 106-116.
Nowicka, A., Wilk, G., Lipski, M., Kołecki, J., & Buczkowska-Radlińska, J. (2015). Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth. Journal of endodontics, 41(8), 1234–1240.
Paranjpe, A., Zhang, H., & Johnson, J. D. (2010). Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. Journal of endodontics, 36(6), 1042–1047.
Parirokh, M., Torabinejad, M., & Dummer, P. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. International endodontic journal, 51(2), 177–205.
Piva, E., Tarquinio, S. B., Demarco, F. F., Silva, A. F., & de Araujo, V. C. (2006). Immunohistochemical expression of fibronectin and tenascin after direct pulp capping with calcium hydroxide. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 102(4), 66-71.
Sage, E. H., & Bornstein, P. (1991). Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. The Journal of biological chemistry, 266(23), 14831–14834.
Salako, N., Joseph, B., Ritwik, P., Salonen, J., John, P., & Junaid, T. A. (2003). Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dental traumatology: official publication of International Association for Dental Traumatology, 19(6), 314–320.
Schuurs, A. H. B., Gruythuysen, R. J. M., & Wesselink, P. R. (2000). Pulp capping with adhesive resinbased composite versus calcium hydroxide: a review. Endodontics & dental traumatology, 16, 240–250.
Shayegan, A., Jurysta, C., Atash, R., Petein, M., & Abbeele, A. V. (2012). Biodentine used as a pulp-capping agent in primary pig teeth. Pediatric Dentistry, 34(7), 202-208.
Shrestha, P., Sumitomo, S., Lee, C. H., Nagahara, K., Kamegai, A., Yamanaka, T., Takeuchi, H., Kusakabe, M., & Mori, M. (1996). Tenascin: growth and adhesion modulation--extracellular matrix degrading function: an in vitro study. European journal of cancer. Part B, Oral oncology, 32(2), 106–113.
Silva, L., Lopes, Z., Sá, R. C., Novaes Júnior, A. B., Romualdo, P. C., Lucisano, M. P., Nelson-Filho, P., & Silva, R. (2019). Comparison of apical periodontitis repair in endodontic treatment with calcium hydroxide-dressing and aPDT. Brazilian oral research, 33, e092.
Tawil, P. Z., Duggan, D. J., & Galicia, J. C. (2015). Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compendium of continuing education in dentistry (Jamesburg, N.J. 1995), 36(4), 247–264.
Thesleff, I., Mackie, E., Vainio, S., & Chiquet-Ehrismann, R. (1987). Changes in the distribution of tenascin during tooth development. Development (Cambridge, England), 101(2), 289–296.
Torabinejad, M., Parirokh, M., & Dummer, P. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. International endodontic journal, 51(3), 284–317.
Tziafas, D. (1994). Mechanisms controlling secondary initiation of dentinogenesis: a review. International Endodontic Journal, 27(2), 61-74.
Tziafas, D., Alvanou, A., Panagiotakopoulos, N., Smith, A. J., Lesot, H., Komnenou, A., & Ruch, J. V. (1995). Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Archives of oral biology, 40(10), 883–893.
Valentim, D., Bueno, C. R. E., Marques, V. A. S., Benetti, F., Vasques, A. M. V., Cury, M. T. S., Silva, A. C.R., jacinto, R. C., Sivieri-Araujo, G., Cintra, L. T. A., & Dezan-Junior, E. (2021). Avaliação da biocompatibilidade de cimentos reparadores biocerâmicos: Estudo in vivo em ratos wistar. Research, Society and Development, 10(7), 1-10.
Yaemkleebbua, K., Osathanon, T., Nowwarote, N., Limjeerajarus, C. N., & Sukarawan, W. (2019). Analysis of hard tissue regeneration and Wnt signalling in dental pulp tissues after direct pulp capping with different materials. International endodontic journal, 52(11), 1605–1616.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Diego Valentim; Carlos Roberto Emerenciano Bueno; Ana Maria Veiga Vasques; Francine Benetti; Marina Tolomei Sandoval Cury; Ana Claudia Rodrigues da Silva ; Rogerio Castilho Jacinto; Gustavo Sivieri Araújo; Joao Eduardo Gomes-Filho; Edilson Ervolino; Luciano Tavares Angelo Cintra; Eloi Dezan-Junior
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.