Síntesis y caracterización del líquido iónico 1-metil-3-(2,6-(S)-dimetiloct-2-ene)-imidazol tetrafluoroborato

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.18988

Palabras clave:

Líquido iónico; Tetrafluoroborato; 1-Metilimidazol; Rendimiento de la reacción; Paraguay.; Electrólisis.

Resumen

Los líquidos iónicos (IL) son buenos conductores eléctricos y compuestos líquidos orgánicos a temperatura ambiente, con aplicabilidad potencial en la electrólisis del agua para la generación de H2. El propósito de este trabajo es describir la síntesis, caracterización y estudio de la viabilidad del líquido iónico 1-metil-3-(2,6-(S)-dimetiloct-2-eno)-imidazolio tetrafluoroborato (MDI-BF4) como electrolito para producir hidrógeno mediante de la electrólisis del agua. El MDI-BF4 sintetizado se caracterizó por análisis termogravimétrico (TGA) y calorimetría diferencial de barrido (DSC), espectroscopia de infrarrojo medio con transformada de Fourier por método de reflectancia total atenuada (FTIR-ATR), espectroscopia de resonancia magnética nuclear de hidrógeno (RMN 1H) y voltamperometría cíclica (CV). El rendimiento de la síntesis se calculados por TGA y DSC. De los resultados: La espectroscopía infrarroja identificó los grupos funcionales del compuesto y el enlace B-F a 1053 cm-1. La RMN 1H analizada y comparada con los datos de la literatura confirma la estructura de MDI-BF4. El rendimiento de la síntesis de MDI-BF4 que fue del 88,84%. La densidad de corriente alcanzada por MDI-BF4 en el voltamograma muestra que el IL puede conducir corriente eléctrica independientemente de la concentración de agua, lo que indica que MDI-BF4 es un electrolito potencial para la producción de hidrógeno a partir de la electrólisis del agua.

Biografía del autor/a

Ângelo Anderson Silva de Oliveira, Federal University of Rio Grande do Norte

Petroleum Science and Engineering Postgraduate Program, Federal Universityof Rio Grande do Norte, Brazil

Dulce Maria de Araújo Melo, Federal University of Rio Grande do Norte

Materials Science and Engineering Post-graduate Program, Federal University of Rio
Grande do Norte, Brazil

Chemisty Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

Heloísa Pimenta de Macedo, Federal University of Rio Grande do Norte

Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

Rodolfo Luis Bezerra de Araújo Medeiros, Federal University of Rio Grande do Norte

Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

 

Ranayanne Suylane Pereira Campos, Federal University of Rio Grande do Norte

Chemisty Post-graduate Program, Federal Universityof Rio Grande do Norte, Natal, Brazil

Pedro Paulo Linhares Ferreira, Federal University of Rio Grande do Norte

Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

Tomaz Rodrigues de Araújo, Federal University of Rio Grande do Norte

Materials Science and Engineering Post-graduate Program, Federal University of Rio Grande do Norte, Brazil

Citas

Babucci, M., & Uzun, A. (2016). Effects of interionic interactions in 1,3-dialkylimidazolium ionic liquids on the electronic structure of metal sites in solid catalysts with ionic liquid layer (SCILL). Journal of Molecular Liquids, 216, 293–297. https://doi.org/10.1016/j.molliq.2015.12.074

Baek, C. S., Lee, Y. J., Lee, S. J., Lee, S. G., Kim, H. C., & Jeong, S. W. (2017). C2-Functionalized 1,3-dialkylimidazolium ionic liquids for efficient cellulose dissolution. Journal of Molecular Liquids, 234, 111–116. https://doi.org/10.1016/j.molliq.2017.03.086

Díaz-Rodríguez, P., Cancilla, J. C., Matute, G., Chicharro, D., & Torrecilla, J. S. (2015). Inputting molecular weights into a multilayer perceptron to estimate refractive indices of dialkylimidazolium-based ionic liquids - A purity evaluation. Applied Soft Computing Journal, 28, 394–399. https://doi.org/10.1016/j.asoc.2014.12.004

Ezzat, A. O., Atta, A. M., Al-Lohedan, H. A., & Hashem, A. I. (2018). Synthesis and application of new surface active poly (ionic liquids) based on 1,3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions. Journal of Molecular Liquids, 251, 201–211. https://doi.org/10.1016/j.molliq.2017.12.081

Liang, R., Yang, M., & Xuan, X. (2010). Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chinese Journal of Chemical Engineering, 18(5), 736–741. https://doi.org/10.1016/S1004-9541(09)60122-1

Liu, H., & Yu, H. (2019). Ionic liquids for electrochemical energy storage devices applications. Journal of Materials Science and Technology, 35(4), 674–686. https://doi.org/10.1016/j.jmst.2018.10.007

Namboodiri, V. V., & Varma, R. S. (2002). An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Letters, 43(31), 5381–5383. https://doi.org/10.1016/S0040-4039(02)01075-4

Orsini, M., Chiarotto, I., Elinson, M. N., Sotgiu, G., & Inesi, A. (2009). Benzoin condensation in 1,3-dialkylimidazolium ionic liquids via electrochemical generation of N-heterocyclic carbene. Electrochemistry Communications, 11(5), 1013–1017. https://doi.org/10.1016/j.elecom.2009.02.045

Palgunadi, J., Kang, J. E., Nguyen, D. Q., Kim, J. H., Min, B. K., Lee, S. D., Kim, H., & Kim, H. S. (2009). Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids. Thermochimica Acta, 494(1–2), 94–98. https://doi.org/10.1016/j.tca.2009.04.022

Rola, K., Zając, A., Czajkowski, M., Szpecht, A., Zdończyk, M., Śmiglak, M., Cybińska, J., & Komorowska, K. (2019). Ionic liquids for active photonics components fabrication. Optical Materials, 89(November 2018), 106–111. https://doi.org/10.1016/j.optmat.2019.01.003

Small, G. W. (1992). Spectrometric Identification of Organic Compounds | R.M. Silverstein, G.C. Bassler and T.C. Morrill, 5th edn., Wiley, New York, 1991 (ISBN 0-471-63404-2). 419 pp. Vibrational Spectroscopy, 4(1), 123–124. https://www.sciencedirect.com/science/article/abs/pii/092420319287024A

Wadhawan, J. D., Schröder, U., Neudeck, A., Wilkins, S. J., Compton, R. G., Marken, F., Consorti, C. S., De Souza, R. F., & Dupont, J. (2000). Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64-/3- in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. Journal of Electroanalytical Chemistry, 493(1–2), 75–83. https://doi.org/10.1016/S0022-0728(00)00308-9

Wang, G., Fang, S., Luo, D., Yang, L., & Hirano, S. ichi. (2016). Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries. Electrochemistry Communications, 72, 148–152. https://doi.org/10.1016/j.elecom.2016.09.023

Wang, Y., Wei, L., Li, K., Ma, Y., Ma, N., Ding, S., Wang, L., Zhao, D., Yan, B., Wan, W., Zhang, Q., Wang, X., Wang, J., & Li, H. (2014). Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology, 170, 499–505. https://doi.org/10.1016/j.biortech.2014.08.020

Xiao, C., Wibisono, N., & Adidharma, H. (2010). Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chemical Engineering Science, 65(10), 3080–3087. https://doi.org/10.1016/j.ces.2010.01.033

Yan, B., Li, K., Wei, L., Ma, Y., Shao, G., Zhao, D., Wan, W., & Song, L. (2015). Understanding lignin treatment in dialkylimidazolium-based ionic liquid-water mixtures. Bioresource Technology, 196, 509–517. https://doi.org/10.1016/j.biortech.2015.08.005

Yue, C., Fang, D., Liu, L., & Yi, T. F. (2011). Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. Journal of Molecular Liquids, 163(3), 99–121. https://doi.org/10.1016/j.molliq.2011.09.001

Zec, N., Vraneš, M., Bešter-Rogač, M., Trtić-Petrović, T., Dimitrijević, A., Čobanov, I., & Gadžurić, S. (2018). Influence of the alkyl chain length on densities and volumetric properties of 1,3-dialkylimidazolium bromide ionic liquids and their aqueous solutions. Journal of Chemical Thermodynamics, 121, 72–78. https://doi.org/10.1016/j.jct.2018.02.001

Zhu, X., Song, M., Wang, S., & Dai, S. (2019). Understanding the effect of molecular solvents on the microscopic network of DBU imidazole ionic liquid. Journal of Molecular Liquids, 276, 325–333. https://doi.org/10.1016/j.molliq.2018.11.146

Zicmanis, A., & Anteina, L. (2014). Dialkylimidazolium dimethyl phosphates as solvents and catalysts for the Knoevenagel condensation reaction. Tetrahedron Letters, 55(12), 2027–2028. https://doi.org/10.1016/j.tetlet.2014.02.035.

Descargas

Publicado

14/08/2021

Cómo citar

OLIVEIRA, Ângelo A. S. de .; MELO, D. M. de A.; MACEDO, H. P. de .; MEDEIROS, R. L. B. de A.; CAMPOS, R. S. P.; FERREIRA, P. P. L.; ARAÚJO, T. R. de. Síntesis y caracterización del líquido iónico 1-metil-3-(2,6-(S)-dimetiloct-2-ene)-imidazol tetrafluoroborato. Research, Society and Development, [S. l.], v. 10, n. 10, p. e393101018988, 2021. DOI: 10.33448/rsd-v10i10.18988. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18988. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Exactas y de la Tierra