Aplicación de la destilación solar en la potabilización de agua contaminada

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19644

Palabras clave:

Contaminación del agua; Energía solar; Destilación; Potabilidad.

Resumen

La escasez y la falta de agua potable son los desafíos más graves del siglo XXI. Varios factores pueden comprometer la calidad del agua, destacando el destino final de las aguas residuales domésticas y la disposición inadecuada de los residuos sólidos urbanos e industriales. Este trabajo tiene como objetivo realizar una revisión de la literatura sobre contaminantes y contaminantes del agua, así como la dirección de la energía solar en diferentes tipos de alambiques (bandeja, pirámide, película capilar, mecha y cascada) para beber agua. Además, discriminar las características, diferencias y ventajas que existen entre los principales modelos de destiladores. La metodología de este trabajo se llevó a cabo en las principales y más importantes bases de datos nacionales e internacionales en el campo de la desalación y la energía solar. El agua destinada al consumo humano debe ser potable y cumplir con las normas microbiológicas, fisicoquímicas y radiactivas, para no representar un riesgo para la salud. La destilación solar consiste en calentar el agua con los rayos del sol, lo que permite la producción de vapor que se condensa en una superficie fría y se recoge, produciendo agua pura. Por lo tanto, los destiladores solares pueden ser utilizados con fines domésticos, especialmente en regiones sin acceso a la electricidad, por ser una tecnología social que ha brindado beneficios socioeconómicos y ambientales, ya que favorece la difusión social, posibilitando su uso individual o colectivo y proporcionando agua limpia a través de esta tecnología sostenible y rentable.

Citas

Agrawal, A., Rana, R. S., & Srivastava, P. (2017). Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies, 3, 466-482. https://doi.org/10.1016/j. reffit.2017.05.003

Abujazar, M. S. S.,Fatihah, S., Ibrahim, I. A., Kabeel, A. E., & Sharil, S. (2018). Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model. Journal of Cleaner Production, 170, 147-159. https://doi.org/10.1016/j.jclepro.2017.09.092

Abu Amra, S. S., & Yassin, M. M. (2008). Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: Seven years of monitoring (2000-2006). Public Health, 122, 1275-1283. https://doi.org/10.1016/j.puhe.20 08.02.009

Acra, A., Jurdi, M., Mu'allem, H., Karahagopian, Y., & Raffoul, Z. (1990). Water Disinfection by solar radiation: assessment and application.79 p., First edition. Canada: IDRC.

Al-Hassan, G. A., & Algarni, S. (2013). Exploring of water distillation by single solar still basins.American Journal of Climate Change, 2, 57-61. https://doi.org/10.4236/ajcc.2013.21006

Alegbeleye, O. O., & Sant’ana, A. S. (2020). Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. International Journal of Hygiene and Environmental Health, 227, 1-20. https://doi.org/10.1016/j.ijheh.202 0.113524

Alireza, B., Mohammadi, S., Mowlavi, A. & Parvaresh, P. (2010).Measurement of heavy radioactive pollution: radon and radium in drinking water samples in Mashhad. International Journal of Current Research, 10, 54-58. https://doi.org/10.18869/acadpub.Ijrr .15.1.81

Ana. Agência Nacional de Águas (Brasil). Manual de Usos Consuntivos da Água no Brasil/Agência Nacional de Águas. 75 p.

Asadi, R. Z., Suja, F., Ruslan, M. H., & Jalil, N. A. (2013).The application of a solar still in domestic and industrial wastewater treatment.Solar Energy, 93, 63-71. https://doi.org/10.1016/j. solener.2013.03.024

Ayoub, G. M., & Malaeb, L. (2019). Solar Water Disinfection: UV radiation transmittance of various solar reactor tubes. Energy Procedia, 157, 498-51.https://doi.org/10.1016/j.egypro .2018.11.214

Bharadwaj G. V., Ashok B. C., Krishna S. A. M.,Jayashankar, N., & Dixit, A. C. (2019). An experimental investigation and performance assessment of a solar water purifier. International Journal of Mechanical and Production, 9(5), 403-414. https://issuu.com/tjprc/docs/35. ijmperdoct201935

Bertogli, G., Avila-Merino, A., Bocci, E., Naso, V., & Rotella, R. (2008). Renewable Energy Technologies: Wind, Mini-hydro, Thermal, Photovoltaic Biomass and Waste. First Edition, International Centre for Science and High Technology.

Bezerra, A. M. (1990). Aplicações Práticas da Energia Solar. Editora: Nobel.

Blaschke, A. P., Derx, J., Zessner, M., Kirnbauer, R., Kavka, G., Strelec, H., Farnleitner, A. H., & Pang, L. (2016).Setback distances between small biological wastewater treatment systems and drinking water wells against virus contamination in alluvial aquifers. Science of the Total Environment, 573, 278-289. https://doi.org/10.1016/j.scitotenv.2016.08.075

Bouchekima, B. (2002). A Solar desalination plant for domestic water needs in arid areas of South Algeria. Desalination, 153, 65-69. https://doi.org/10.1016/S0011-9164(02)01094-9

Braga, B., Hespanhol, I., Conejo, J. C. L., Mierzwa, J. C., Barros, M. T. L., Spencer, M., Porto, M., Nucci, N., Juliano, N., & Eiger, S. (2010). Introdução à Engenharia Ambiental: O Desafio do Desenvolvimento Sustentável. 318p., 2a Edição, São Paulo: Pearson Prentice Hall.

Brasil. (2021). Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para Portaria nº 888 de 04 de maio de 2021 do Ministério da Saúde, dispondo sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade.

Canepari, P., & Pruzzo, C. (2008). Human pathogens in water: insights into their biology and detection. Current Opinion in Biotechnology, 19(3), 241-243. https://doi.org/10.1016/j.copbio.2008.05. 004

Cardoso, M. K. B., Brito, Y. J. V., Silva, K. S., Silva, C. B., Lima, C. A. P., & Medeiros, K. M.(2020). Dessalinizador solar do tipo cascata aplicado em poços artesianos no interior da Paraíba. Águas Subterrâneas, 34(2), 135-142. http:/dx.doi.org/10.14295/ras.v34i2.29799

Cardoso, M. K. B. (2020). Análise Térmica e Hidrodinâmica de um Dessalinizador Solar Tipo Ondular. Dissertação de Mestrado. Programa de Pós-graduação em Ciência e Tecnologia Ambiental da Universidade Estadual da Paraíba, Campina Grande.

Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8, 1402-1419. https://doi.org/10.3390/ijerph80 51402

Dessie, A., Alemayehu, E., Mekonen, S., Legesse, W., Kloos, H., & Ambelu, A. (2014).Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia. Journal of Environmental Health Sciences & Engineering, 12(25), 1-6. http://www.ijehse.com/content/12/1/25

Doménech, J. (2003). CryptosporidiumyGiardia, problemas emergentes en el agua de consumo humano. Sanidad Ambiental, 22, 112-116. https://www.elsevier.es/es-revista-offarm-4-pdf-13055926

Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes.Fourth Edition, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Fellenberg, G. (2012). Introdução aos Problemas da Poluição Ambiental. 196p. EPU-Gen.

Figueredo-Fernández, M., Gutiérrez-Alfaro, S., Acevedo-Merino, A., & Manzano, M. A. (2017).Estimating lethal dose of solar radiation for enterococcus inactivation through radiation reaching the water layer. Application to Solar Water Disinfection (SODIS).Solar Energy, 158, 303-310. https://doi.org/10.1016/j.solener. 2017.09.006

Gonçalves, R. F. (2003). Desinfecção de Efluentes Sanitários. 438p., Projeto PROSAB, ABES.

Goswami, D. Y. (2015).rinciples of Solar Engineering. Third edition, CRC Press, Taylor & Francis Group.

Higgins M. W., Shakeelur R. A. R., Ankita E. P., & Neetu J. (2019). Ultra-low-cost cotton based solar evaporation device for seawater desalination and wastewater purification to produce drinkable water, Desalination, 456, 85-96. https://doi.org/10.1016/j.desal.2019.01.017.

Hussain, C. M., & Keçili, L. (2020). Chapter 1 - Environmental pollution and environmental analysis. Modern Environmental Analysis Techniques for Pollutants, 1, 1-36. https://doi.org/10.1016/b978-0-12-816934-6.00001-1

Ibrahim, A. G. M., Allam, E. E., & Elshamarka, S. E. (2015). A modified basin type solar still: experimental performance and economic study. Energy, 93, 335-342. https://doi.org/10.1016/j.energy.2015.09.045

Incropera, F. P., & Dewitt, D. P. (2014). Fundamentos de Transferência de Calor e de Massa. (7a ed.), LTC Editora.

Isenmann, A. F. (2018). Operações Unitárias na Indústria Química. (3a ed.), Edição do Autor.

Ismail, S. O., Ojolo, S. J., Orisaleye, J. I., & Alogbo, A. O.(2013). Design and development of a dual solar water purifier.International Journal on Advanced Science, Engineering and Information Technology, 2(2), 8-17. https://www. researchgate.net/publication/305639843

Jani, H. K., & Modi, K. V. (2018). A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices.Renewable and Sustainable Energy Reviews, 93, 302-317. https://doi.org/10.1016/j.rser.2018.05.0 23

Jatobá, R., & Loschiavo, R. (2019). Atitudes Sustentáveis para Leigos. Alta Books.

Kaabi A., Rahmani R., & Khetib Y. (2008). Efficiency of Multi-Stage Solar Still with Capillary Film: Effect of Certain Thermophysical Parameters, The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Forum.

Kalogirou, S. A. (2014). Solar Energy Engineering Processes and Systems. 815p. Second Edition, Academic Press.

Kaviti, A. K., Yadav, A., &, A. (2016). Inclined solar still designs: A review.Renewable and Sustainable Energy Reviews, 54, 429-451. https://doi.org/10.1016/j.rser.2015.10.027

Kvam E., Benner, K. (2020). Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photo sensitizers. Journal of Photochemistry & Photobiology, B: Biology, 209, 1-10. https://doi.org/10.1016/j.jphotobiol. 2020.111899

Kim, S. H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., & Davies, E. (2016). Balancing global water availability and use at basin scale in an integrated assessment model. Climatic Change, 136, 217-231. https://doi.org/ 10.1007/s10584-016-1604-6

Malheiros, P. S., Schäfer, D. F., Herbert, I. M., Capuani, S. M., Silva, E. M., Sardiglia, C. U., Scapin, D., Rossi, E. M., & Brandelli, A. (2009). Contaminação bacteriológica de águas subterrâneas da região oeste de Santa Catarina, Brasil. Revista Instituto Adolfo Lutz, 68(2), 305-308. http://www.ial.sp.gov.br /resources/insituto-adolfo-lutz/publicacoes/rial/2000/rial68_2_complet a/1222.pdf

Martínez-García, A., Vincent, M., Rubiolo, V., Domingos, M., Canela, M. C., Oller, I., Fernández-Ibáñez, P., & Polo-López, M. I. (2020). Assessment of a pilot solar V-trough reactor for solar water disinfection. Chemical Engineering Journal, 399, 1-8. https://doi.org/10.1016/j.cej.2020.125719

Mcguigan, K. G., Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C., Boyle, M.,Sichel, C.,Fernández-Ibáñez, P., Meyer, B. P.,Ramalingham, S., & Meyer, E. A. (2006).Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 101, 453-463. https://doi.org/10.1111/j.1365-2672.2006.02935.x

Mekonnen, M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances. 2(2), 1-6. https://doi.org/10.1126/sciadv.1500323

Navntoft, C., Ubomba-Jaswa, E.,Mcguigan, K. G., & Fernández-Ibáñez P. (2008).Effective ness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light. Journal of Photochemistry and Photobiology B: Biology, 93, 155-161. https://doi .org/10.1016/j.jphotobiol.2008.08.002

Nayi, K. H., Modi, K. V. (2018). Pyramid solar still: A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 136-148. https://doi.org/10.1016/j.rser.2017.07.004

Nascimento, F. T.,Nascimento, C. A.,Spilki, F. R.,Staggemeier, R., & Lauer Júnior, C. M. (2018). Efficacy of a solar still in destroying virus and indicator bacteria in water for human consumption. Revista Ambiente & Água, 13(4), 1-12. https://doi.org/10.4136/ambi-agua.2084

Parsa, S. M., Rahbar, A., Koleini, M. H., Javadi, Y. D., Afrand, M., Rostami, S., & Amidpour, M. (2020). First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS).Desalination, 491, 1-20. https://doi.org/10.1016/j.desal. 2020.114592

Pinho, J. T., & Galdino, M. A. (2014). Manual de Engenharia para Sistemas Fotovoltaicos. CEPEL CRESESB.

Polo-Lopez, M. I., Fernandez-Ibanez, P., Ubomba-Jaswa, E., Navntoft, C., Garcia-Fernandez, I., Dunlop, P. S. M., Schmidt, M., Byrne, J. A., & Mcguigan, K. G. (2011). Elimination of water pathogens with solar radiation using and automated sequential batch CPR Reactor. Journal of Hazardous Materials, 196, 16-21. https://doi.org/10.1016/j.jhazmat.201 1.08.052

Rosa, A. H., Fraceto, L. F., & Moschini-Carlos, V. (2012). Meio Ambiente e Sustentabilidade. 412p., Bookman.

Spiro, T. G., E Stigliani, W. M. (2008). Química ambiental. (2a ed.). 352p. Pearson Universidades.

Sathyamurthy, S., Kennady, H. J., Nagarajan, P. K., & Amimul, A. (2014).Factors affecting the performance of triangular pyramid solar still.Desalination, 344, 383-390. https://doi.org/10.1016/j.desal.2014.04.005

Shannon, M. A., Bohn, P. W.,Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2008).Science and technology for water purification in the coming decades.Nature, 452, 301-310. https://doi.org/10.1038/nature06599

Sharma, S., & Bhttacharya, A. (2017).Drinking water contamination and treatment techniques.Applied Water Science, 7, 1043-1067. https://doi.org/10.1007/s13201-016-0455-7

Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118. https://doi.org/10.1016/ j.rser.2014.09.002

Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267-284. https://doi.org/10.1016/j. applthermaleng.2015.11.041

Strauss, A., Reyneke, B., Waso, M., & Khan, W. (2018). Compound parabolic collector solar disinfection system for the treatment of harvested rainwater. Environmental Science Water Research & Technology, 4, 976-991. https://doi.org/10.1039/C8EW00152A

Vivar, M., Pichel, N., Fuentes, M., & López-Vargas, A. (2017). Separating the UV and thermal components during real-time solar disinfection experiments: The effect of temperature. Solar Energy, 146, 334-341. https://doi.org/10.1016/J.SOLENER.2017.0 2.053

Publicado

02/09/2021

Cómo citar

SARMENTO, K. K. F.; ARAÚJO, B. A.; SOUZA, J. E. S. de; REBOUÇAS, L. D.; MEDEIROS, K. M. de .; LIMA, C. A. P. de . Aplicación de la destilación solar en la potabilización de agua contaminada. Research, Society and Development, [S. l.], v. 10, n. 11, p. e322101119644, 2021. DOI: 10.33448/rsd-v10i11.19644. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19644. Acesso em: 29 nov. 2024.

Número

Sección

Revisiones