Leche materna: procesamiento y conservación: una revisión
DOI:
https://doi.org/10.33448/rsd-v10i12.20118Palabras clave:
Pasteurización del titular; Liofilización; Secado por atomización; Alta presión hidrostática; Alta temperatura y poco tiempo; Irradiación ultravioleta.Resumen
La leche materna tiene un equilibrio de nutrientes y compuestos bioactivos, y debe ser la fuente de alimento exclusiva durante los primeros seis meses de vida del bebé. En los casos en que la mujer no pueda amamantar, debido a hipogalactia o enfermedad preexistente, se recomienda el uso de leche materna donada, disponible en los bancos de leche materna. Actualmente, en los bancos de leche materna el procesamiento aplicado para mayor conservación es la pasteurización Holder. Por tanto, el objetivo de este trabajo es realizar una búsqueda en la literatura sobre nuevos posibles tratamientos a aplicar a la leche materna, y su influencia en su composición físico-química; y en este sentido, los procesos estudiados fueron: pasteurización en soporte, liofilización, secado por aspersión, alta presión hidrostática, alta temperatura y corto tiempo, e irradiación ultravioleta de onda corta. Para ello se realizó una búsqueda en bases de datos y se seleccionaron 126 artículos para realizar esta revisión según las palabras clave utilizadas. Se observó que los tratamientos estudiados se pueden aplicar para el procesamiento y conservación de la leche materna, una vez aplicada en matrices de similar composición.
Citas
Aceti, A., Cavallarin, L., Martini, S., Giribaldi, M., Vitali, F., Ambretti, S., & Corvaglia, L. (2020). Effect of Alternative Pasteurization Techniques on Human Milk's Bioactive Proteins. Journal of Pediatric Gastroenterology and Nutrition, 70(4), 508-512.
Akinbi, H., Meinzen-Derr, J., Auer, C., Ma, Y., Pullum, D., Kusano, R., & Zimmerly, K. (2010). Alterations in the host defense properties of human milk following prolonged storage or pasteurization. Journal of pediatric gastroenterology and nutrition, 51(3), 347-352.
Aktaş, M., Khanlari, A., Amini, A., & Şevik, S. (2017). Performance analysis of heat pump and infrared–heat pump drying of grated carrot using energy-exergy methodology. Energy Conversion and Management, 132, 327-338.
Ambros, S., Foerst, P., & Kulozik, U. (2018). Temperature-controlled microwave-vacuum drying of lactic acid bacteria: Impact of drying conditions on process and product characteristics. Journal of Food Engineering, 224, 80-87.
Ansari, J. A., Ismail, M., & Farid, M. (2019). Investigate the efficacy of UV pretreatment on thermal inactivation of Bacillus subtilis spores in different types of milk. Innovative Food Science & Emerging Technologies, 52, 387-393.
Anum, R., Ghafoor, A., & Munir, A. (2017). Study of the drying behavior and performance evaluation of gas fired hybrid solar dryer. Journal of Food Process Engineering, 40(2), e12351.
Arreola, A. R., Lacroix, M., Pacheco, J. R. S., Morales, E. G., Padilla, J. A. G., Castellanos, E. A., & Uscanga, B. R. A. (2018). Assessment of the Biological Activity in Human Milk Power Treated with Different Processes for Their Conservation. Journal of Food and Nutrition Research, 6(5), 329-334.
Assegehegn, G., Brito-de la Fuente, E., Franco, J. M., & Gallegos, C. (2019). The importance of understanding the freezing step and its impact on freeze-drying process performance. Journal of pharmaceutical sciences, 108(4), 1378-1395.
Baker, C.G.J. (1997) Industrial Food Drying. Springer Science & Business Media.
Ballard, O., & Morrow, A. L. (2013). Human milk composition: nutrients and bioactive factors. Pediatric Clinics, 60(1), 49-74.
Barbosa, J., & Teixeira, P. (2017). Development of probiotic fruit juice powders by spray-drying: A review. Food Reviews International, 33(4), 335-358.
Basholli-Salihu, M., Mueller, M., Salar-Behzadi, S., Unger, F. M., & Viernstein, H. (2014). Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. LWT-Food Science and Technology, 57(1), 276-282.
Borges, M. S., Oliveira, A. M. D. M., Hattori, W. T., & Abdallah, V. O. (2018). Quality of human milk expressed in a human milk bank and at home. Jornal de Pediatria (Versão em Português), 94(4), 399-403.
Brasil (2004). Agência Nacional de Vigilância Sanitária. Regulamento Técnico para o gerenciamento de resíduos de serviços de saúde, Resolução nº 306 de 7 de Dezembro de 2004. Anvisa: Brasília, 2004.
Brasil (2006). Agência Nacional de Vigilância Sanitária. Manual de gerenciamento de resíduos de serviços de saúde. Anvisa: Brasília, 2006 (Série Tecnologia em Serviços de Saúde).
Brasil (2008). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Banco de Leite Humano: funcionamento, prevenção e controle de riscos. Anvisa: Brasília, 2008.
Briere, C. E., McGrath, J. M., Jensen, T., Matson, A., Finck, C., Ikuta, L., & Zukowsky, K. (2016). Breast milk stem cells. Advances in Neonatal Care, 16(6), 410-419.
Buhler, S., Solari, F., Gasparini, A., Montanari, R., Sforza, S., & Tedeschi, T. (2019). UV irradiation as a comparable method to thermal treatment for producing high quality stabilized milk whey. Lwt, 105, 127-134.
Carter, B., Patel, H., Barbano, D. M., & Drake, M. (2018). The effect of spray drying on the difference in flavor and functional properties of liquid and dried whey proteins, milk proteins, and micellar casein concentrates. Journal of dairy science, 101(5), 3900-3909.
Castro, A. J., Navarro, H. R., Solís, P. J., Salazar, Q. I., Macías, L. G., Barrera, D. L. J., & Aguilar, U. B. (2017). Impact of pasteurization/freeze-drying on available immunoglobulin content of the mature human milk. Use in human milk banking of hospitals. Nutricion hospitalaria, 34(4), 899.
Cavazos-Garduño, A., Serrano-Niño, J. C., Solís-Pacheco, J. R., Gutierrez-Padilla, J. A., González-Reynoso, O., García, H. S., & Aguilar-Uscanga, B. R. (2016). Effect of pasteurization, freeze-drying and spray drying on the fat globule and lipid profile of human milk. J Food Nutr Res, 4(5), 296-302.
Challener, C. A. (2017). For lyophilization, excipients really do matter.
Christen, L., Lai, C. T., Hartmann, B., Hartmann, P. E., & Geddes, D. T. (2013). Ultraviolet-C irradiation: a novel pasteurization method for donor human milk. PLoS One, 8(6), e68120.(a)
Christen, L., Lai, C. T., Hartmann, B., Hartmann, P. E., & Geddes, D. T. (2013). The effect of UV-C pasteurization on bacteriostatic properties and immunological proteins of donor human milk. PLOS one, 8(12), e85867.(b)
Considine, K. M., Kelly, A. L., Fitzgerald, G. F., Hill, C., & Sleator, R. D. (2008). High-pressure processing–effects on microbial food safety and food quality. FEMS microbiology letters, 281(1), 1-9.
Contador, R., Delgado, F. J., García-Parra, J., Garrido, M., & Ramírez, R. (2015). Volatile profile of breast milk subjected to high-pressure processing or thermal treatment. Food chemistry, 180, 17-24.
Contador, R., Delgado-Adámez, J., Delgado, F. J., Cava, R., & Ramírez, R. (2013). Effect of thermal pasteurisation or high pressure processing on immunoglobulin and leukocyte contents of human milk. International Dairy Journal, 32(1), 1-5.
Coohill, T. P., & Sagripanti, J. L. (2008). Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochemistry and photobiology, 84(5), 1084-1090.
de Andrade, K. D., do Nascimento Rangel, A. H., de Araújo, V. M., de Medeiros, H. R., Bezerra, K. C., Bezerril, R. F., & de Lima Júnior, D. M. (2014). Qualidade do leite bovino nas diferentes estações do ano no estado do Rio Grande do Norte. Revista Brasileira de Ciência Veterinária, 21(3).
de Oliveira, S. C., Deglaire, A., Ménard, O., Bellanger, A., Rousseau, F., Henry, G., & Bourlieu, C. (2016). Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Research International, 88, 263-275.
de Souza Lima, R., Ré, M. I., & Arlabosse, P. (2020). Drying droplet as a template for solid formation: A review. Powder Technology, 359, 161-171.
Delgado, F. J., Cava, R., Delgado, J., & Ramírez, R. (2014). Tocopherols, fatty acids and cytokines content of holder pasteurised and high-pressure processed human milk. Dairy Science & Technology, 94(2), 145-156.
Demazeau, G., Plumecocq, A., Lehours, P., Martin, P., Couëdelo, L., & Billeaud, C. (2018). A new high hydrostatic pressure process to assure the microbial safety of human milk while preserving the biological activity of its main components. Frontiers in public health, 6, 306.
do Vale Morais, A. R., do Nascimento Alencar, É., Júnior, F. H. X., De Oliveira, C. M., Marcelino, H. R., Barratt, G., & Elaissari, A. (2016). Freeze-drying of emulsified systems: A review. International journal of pharmaceutics, 503(1-2), 102-114.
Donalisio, M., Rittà, M., Francese, R., Civra, A., Tonetto, P., Coscia, A., & Lembo, D. (2018). High Temperature—Short Time Pasteurization Has a Lower Impact on the Antiviral Properties of Human Milk Than Holder Pasteurization. Frontiers in pediatrics, 6, 304.
Dórea, J. G., Fenton, S. E., LaKind, J. S., & Berlin Jr, C. M. (2012). Researching chemicals in human milk can be conducted without discouraging breastfeeding. Bosnian journal of basic medical sciences, 12(2), 137-138.
Escuder-Vieco, D., Espinosa-Martos, I., Rodríguez, J. M., Corzo, N., Montilla, A., Siegfried, P., & Fernández, L. (2018). High-temperature short-time pasteurization system for donor milk in a human milk bank setting. Frontiers in microbiology, 9, 926.
Escuder-Vieco, D., Espinosa-Martos, I., Rodríguez, J. M., Fernández, L., & Pallás-Alonso, C. R. (2018). Effect of HTST and holder pasteurization on the concentration of immunoglobulins, growth factors, and hormones in donor human milk. Frontiers in immunology, 9, 2222.
Ewaschuk, J. B., & Unger, S. (2015). Human milk pasteurization: benefits and risks. Current opinion in clinical nutrition and metabolic care, 18(3), 269-275.
Fidler, N., Sauerwald, T. U., Demmelmair, H., & Koletzko, B. (2001). Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. In Bioactive Components of Human Milk (pp. 485-495). Springer, Boston, MA.
Franch, A., Audí, C., Ramírez-Santana, C., Permanyer, M., Pérez-Cano, F. J., Moltó-Puigmartí, C., & Castellote, C. (2010). Banked human milk treatment and immunoactive factors content. Comparison with high pressure processing. Proceedings of the Nutrition Society, 69(OCE3).
Franklin, P., & Volk, A. A. (2019). Breast Feeding.
Fugate, K., Hernandez, I., Ashmeade, T., Miladinovic, B., & Spatz, D. L. (2015). Improving human milk and breastfeeding practices in the NICU. Journal of Obstetric, Gynecologic & Neonatal Nursing, 44(3), 426-438.
Gan, S. H., Ong, S. P., Chin, N. L., & Law, C. L. (2017). A comparative quality study and energy saving on intermittent heat pump drying of Malaysian edible bird’s nest. Drying Technology, 35(1), 4-14.
Gao, C., Miller, J., Middleton, P. F., Huang, Y. C., McPhee, A. J., & Gibson, R. A. (2019). Changes to breast milk fatty acid composition during storage, handling and processing: A systematic review. Prostaglandins, Leukotrienes and Essential Fatty Acids, 146, 1-10.
Geankoplis, C. J. (1982). Procesos de transporte y operaciones unitarias (No. 620 G4Y).
Giribaldi, M., Coscia, A., Peila, C., Antoniazzi, S., Lamberti, C., Ortoffi, M., & Cavallarin, L. (2016). Pasteurization of human milk by a benchtop high-temperature short-time device. Innovative Food Science & Emerging Technologies, 36, 228-233.
Grazziotin, A. L., Grazziotin, M. C., & Letti, L. A. (2010). Descarte de leite humano doado a Banco de Leite antes e após medidas para reduzir a quantidade de leite imprópria para consumo. Jornal de Pediatria, 86(4), 290-294.
Guardiola Rodríguez, E. (2015). Elaboración de bases lácteas en polvo mediante secado por atomización para fabricación de chocolate.
Guimarães, V.; Almeida, J. A. G.; & Novak, F. R. (2006) Distribuição: cuidados para manipulação do leite humano ordenhado em ambiente hospitalar. In: Normas Técnicas para o Banco de Leite Humano.
Guo, M. (Ed.). (2019). Whey Protein Production, Chemistry, Functionality, and Applications. John Wiley & Sons.
Herrington, B. L. Pasteurização. Milk And Mil Processing, McGraw-Hill, (1948), 166–178.
Holsinger, V. H., Rajkowski, K. T., & Stabel, J. R. (1997). Milk pasteurisation and safety: a brief history and update. Revue scientifique et technique-Office international des epizooties, 16(2), 441-466.
Huang, S., Vignolles, M. L., Chen, X. D., Le Loir, Y., Jan, G., Schuck, P., & Jeantet, R. (2017). Spray drying of probiotics and other food-grade bacteria: A review. Trends in food science & technology, 63, 1-17.
Huppertz, T., Fox, P. F., de Kruif, K. G., & Kelly, A. L. (2006). High pressure-induced changes in bovine milk proteins: a review. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764(3), 593-598.
Jia, Z., Liu, B., Li, C., Fang, T., & Chen, J. (2018). Newly designed superheated steam dryer bearing heat recovery unit: Analysis of energy efficiency and kinetics of Kelp drying. Drying Technology, 36(13), 1619-1630.
Johnston, M., Landers, S, Noble, L, Szucs, K., & Viehmann, L. (2012). Breastfeeding and the use of human milk. Pediatrics, 129(3), e827-e841.
Júnior, B. R. D. C. L., Tribst, A. A. L., Ribeiro, L. R., & Cristianini, M. (2019). High pressure processing impacts on the hydrolytic profile of milk coagulants. Food bioscience, 31, 100449.
Katke, R., Walinjkar, S., Saraogi, M., & Tawre, P. (2015). Practicalities and benefits of human milk banks in India. International Journal of Gynecology & Obstetrics, 129(1), 83-84.
Klotz, D., Joellenbeck, M., Winkler, K., Kunze, M., Huzly, D., & Hentschel, R. (2017). High‐temperature short‐time pasteurisation of human breastmilk is efficient in retaining protein and reducing the bacterial count. Acta Paediatrica, 106(5), 763-767.
Kozanoglu, B., Mazariegos, D., Guerrero-Beltrán, J. A., & Welti-Chanes, J. (2013). Drying kinetics of paddy in a reduced pressure superheated steam fluidized bed. Drying Technology, 31(4), 452-461.
Kumar, R. K., Singhal, A., Vaidya, U., Banerjee, S., Anwar, F., & Rao, S. (2017). Optimizing nutrition in preterm low birth weight infants—Consensus summary. Frontiers in nutrition, 4, 20.
Lozano, B., Castellote, A. I., Montes, R., & López-Sabater, M. C. (2014). Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk. International journal of food sciences and nutrition, 65(6), 703-707.
Lu, J., Wang, X., Zhang, W., Liu, L., Pang, X., Zhang, S., & Lv, J. (2016). Comparative proteomics of milk fat globule membrane in different species reveals variations in lactation and nutrition. Food chemistry, 196, 665-672.
Lu, J., Zhang, S., Liu, L., Pang, X., Ma, C., Jiang, S., & Lv, J. (2018). Comparative proteomics analysis of human and ruminant milk serum reveals variation in protection and nutrition. Food chemistry, 261, 274-282.
Ma, Y., Zhang, L., Wu, Y., & Zhou, P. (2019). Changes in milk fat globule membrane proteome after pasteurization in human, bovine and caprine species. Food chemistry, 279, 209-215.
Maia, P. R. D. S., Almeida, J. A. G. D., Novak, F. R., & Silva, D. A. D. (2006). Rede Nacional de Bancos de Leite Humano: gênese e evolução.
Malafronte, L., Ahrné, L., Innings, F., Jongsma, A., & Rasmuson, A. (2015). Prediction of regions of coalescence and agglomeration along a spray dryer—application to skim milk powder. Chemical engineering research and design, 104, 703-712.
Malinowska-Pańczyk, E., Królik, K., Skorupska, K., Puta, M., Martysiak-Żurowska, D., & Kiełbratowska, B. (2019). Microwave heat treatment application to pasteurization of human milk. Innovative Food Science & Emerging Technologies, 52, 42-48.
Manin, L. P., Rydlewski, A. A., Galuch, M. B., Pizzo, J. S., Zappielo, C. D., Senes, C. E., & Visentainer, J. V. (2019). Evaluation of the Lipid Quality of Lyophilized Pasteurized Human Milk for Six Months by GC-FID and ESI-MS. Journal of the Brazilian Chemical Society, 30(8), 1579-1586.
Martin, N. H., Boor, K. J., & Wiedmann, M. (2018). Symposium review: Effect of post-pasteurization contamination on fluid milk quality. Journal of dairy science, 101(1), 861-870.
Matak, K. E., Sumner, S. S., Duncan, S. E., Hovingh, E., Worobo, R. W., Hackney, C. R., & Pierson, M. D. (2007). Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of dairy science, 90(7), 3178-3186.
Mateos-Vivas, M., Rodríguez-Gonzalo, E., Domínguez-Álvarez, J., García-Gómez, D., Ramírez-Bernabé, R., & Carabias- Martínez, R. (2015). Analysis of free nucleotide monophosphates in human milk and effect of pasteurisation or high-pressure processing on their contents by capillary electrophoresis coupled to mass spectrometry. Food chemistry, 174, 348-355.
Mayayo, C., Montserrat, M., Ramos, S. J., Martínez-Lorenzo, M. J., Calvo, M., Sánchez, L., & Pérez, M. D. (2014). Kinetic parameters for high-pressure-induced denaturation of lactoferrin in human milk. International Dairy Journal, 39(2), 246-252.
Meneses, T. M. X. D., Oliveira, M. I. C. D., & Boccolini, C. S. (2017). Prevalence and factors associated with breast milk donation in banks that receive human milk in primary health care units. Jornal de pediatria, 93(4), 382-388.
Menon, A., Stojceska, V., & Tassou, S. (2020). A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science & Technology.
Mitsue, S. C. (2010). Perfil sócio-econômico e ambiental de doadoras de um Banco de Leite Humano no Vale do Paraíba, SP e a qualidade sanitária do leite ordenhado.
Moltó-Puigmartí, C., Permanyer, M., Castellote, A. I., & López-Sabater, M. C. (2011). Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chemistry, 124(3), 697-702.
Mujumdar, A. S., Huang, L. X., & Chen, X. D. (2010). An overview of the recent advances in spray-drying. Dairy Science & Technology, 90(2), 211-224.
Nebbia, S., Giribaldi, M., Cavallarin, L., Bertino, E., Coscia, A., Briard-Bion, V., & Deglaire, A. (2020). Differential impact of Holder and High Temperature Short Time pasteurization on the dynamic in vitro digestion of human milk in a preterm newborn model. Food Chemistry, 127126.
O'Sullivan, J. J., Norwood, E. A., O'Mahony, J. A., & Kelly, A. L. (2019). Atomisation technologies used in spray drying in the dairy industry: A review. Journal of food engineering, 243, 57-69.
Ozmen, L., & Langrish, T. A. G. (2003). An experimental investigation of the wall deposition of milk powder in a pilot-scale spray dryer. Drying technology, 21(7), 1253-1272.
Panchal, H., Patel, R., Chaudhary, S., Patel, D. K., Sathyamurthy, R., & Arunkumar, T. (2018). Solar energy utilisation for milk pasteurisation: A comprehensive review. Renewable and Sustainable Energy Reviews, 92, 1-8.
Parikh, D. M. (2015). Vacuum drying: basics and application. Chem Eng, 122(4), 48-54.
Parrón, J. A., Ripollés, D., Ramos, S. J., Pérez, M. D., Calvo, M., & Sánchez, L. (2018). Effect of thermal and high-pressure treatments on the antirotaviral activity of human milk fractions. Innovative Food Science & Emerging Technologies, 47, 262-270.
Passarini, J., Canata, A. P. R., Zago, K. B. A., Tirapeli, K. G., Medrado, M. M. P. M., da Costa, L. G., & Oliveira, J. (2017). OPGr o53-Taxa de descarte de leite humano e fatores relacionados. Archives Of Health Investigation, 6., v. 6, 2017.
Path - Program for Appropriate Technology in Health. Strengthening human milk banking: A global implementation framework. Version 1. Bill & Melinda Gates Foundation Grand Challenges Initiative, Seattle, WA. 2013.
Peila, C., Moro, G. E., Bertino, E., Cavallarin, L., Giribaldi, M., Giuliani, F., & Coscia, A. (2016). The effect of holder pasteurization on nutrients and biologically-active components in donor human milk: a review. Nutrients, 8(8), 477.
Peixoto, R. R. A., Fernández-Menéndez, S., Fernández-Colomer, B., Vaquero, A. I. P., Cadore, S., Sanz-Medel, A., & Fernández-Sánchez, M. L. (2020). Impact of Holder pasteurization on essential elements from human donor milk: Total contents and protein-binding profiles. Journal of Food Composition and Analysis, 87, 103395.
Percy, S.R. Improvement in drying and concentrating of liquid substances by atomizing. U.S. Patent 125,406, 1872.
Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstrea m/handle/1/158 24/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Permanyer, M., Castellote, C., Ramírez-Santana, C., Audí, C., Pérez-Cano, F. J., Castell, M., & Franch, A. (2010). Maintenance of breast milk immunoglobulin A after high-pressure processing. Journal of dairy science, 93(3), 877-883.
Picaud, J. C., & Buffin, R. (2017). Human milk—treatment and quality of banked human milk. Clinics in Perinatology, 44(1), 95-119.
Picciano, M. F. (1998). Human milk: nutritional aspects of a dynamic food. Neonatology, 74(2), 84-93.
Pisano, R., Arsiccio, A., Capozzi, L. C., & Trout, B. L. (2019). Achieving continuous manufacturing in lyophilization: Technologies and approaches. European Journal of Pharmaceutics and Biopharmaceutics, 142, 265-279.
Pitino, M. A., Unger, S., Doyen, A., Pouliot, Y., Aufreiter, S., Stone, D., & O'Connor, D. L. (2019). High hydrostatic pressure processing better preserves the nutrient and bioactive compound composition of human donor milk. The Journal of Nutrition, 149(3), 497-504.
Prachayawarakorn, S., Soponronnarit, S., Wetchacama, S., & Jaisut, D. (2002). Desorption isotherms and drying characteristics of shrimp in superheated steam and hot air. Drying technology, 20(3), 669-684.
Pronyk, C., Cenkowski, S., & Muir, W. E. (2010). Drying kinetics of instant Asian noodles processed in superheated steam. Drying Technology, 28(2), 304-314.
Rankin, S. A., Bradley, R. L., Miller, G., & Mildenhall, K. B. (2017). A 100-Year Review: A century of dairy processing advancements—Pasteurization, cleaning and sanitation, and sanitary equipment design. Journal of dairy science, 100(12), 9903-9915.
Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of food engineering, 49(4), 311-319.
Rede Brasileira de Banco de Leite (2019). <http://www.redeblh.fiocruz.br/cgi/cgilua.exe/sys/start.htm?sid=360>
Rocha-Pimienta, J., Martillanes, S., Ramírez, R., Garcia-Parra, J., & Delgado-Adamez, J. (2020). Bacillus cereus spores and Staphylococcus aureus sub. aureus vegetative cells inactivation in human milk by high-pressure processing. Food Control, 107212.
Romeu-Nadal, M., Castellote, A. I., Gayà, A., & López-Sabater, M. C. (2008). Effect of pasteurisation on ascorbic acid, dehydroascorbic acid, tocopherols and fatty acids in pooled mature human milk. Food chemistry, 107(1), 434-438.
Rosa, E. D., Tsukada, M., & Freitas, L. A. P. (2006). Secagem por atomização na indústria alimentícia: fundamentos e aplicações. Jornada Científica da Fazu/Faculdades Associadas de Uberaba, 5.
Rydlewski, A. A., Pizzo, J. S., Manin, L. P., Zappielo, C. D., Galuch, M. B., Santos, O. O., & Visentainer, J. V. (2020). Métodos analíticos utilizados para a determinação de lipídios em leite humano: uma revisão. Revista Virtual de Química, 12(1).
Shama, G. (1999). Ultraviolet light.
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in food science & technology, 65, 49-67.
Siacor, F. D. C., Lim, K. J. A., Cabajar, A. A., Lobarbio, C. F. Y., Lacks, D. J., & Taboada, E. B. (2020). Physicochemical properties of spray-dried mango phenolic compounds extracts. Journal of Agriculture and Food Research, 100048.
Silva, C. R. D., Martins, E., Silveira, A. C. P., Simeão, M., Mendes, A. L., Perrone, Í. T., & de Carvalho, A. F. (2017). Thermodynamic characterization of single-stage spray dryers: Mass and energy balances for milk drying. Drying Technology, 35(15), 1791-1798.
Silva, R. C. D., Escobedo, J. P., Gioielli, L. A., Quintal, V. S., Ibidi, S. M., & Albuquerque, E. M. (2007). Composição centesimal do leite humano e caracterização das propriedades físico-químicas de sua gordura. Química Nova, 30(7), 1535-1538.
Silveira, T. M. L., Fonseca, L. M., Cançado, S. V., & Ferraz, V. (2004). Comparação entre os métodos de referência e a análise eletrônica na determinação da composição do leite bovino. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 56(6), 782-787.
Silvestre, D., Miranda, M., Muriach, M., Almansa, I., Jareño, E., & Romero, F. J. (2010). Frozen breast milk at-20 C and-80 C: A longitudinal study of glutathione peroxidase activity and malondialdehyde concentration. Journal of Human Lactation, 26(1), 35-41.
Sinanoglou, V. J., Cavouras, D., Boutsikou, T., Briana, D. D., Lantzouraki, D. Z., Paliatsiou, S., & Zoumpoulakis, P. (2017). Factors affecting human colostrum fatty acid profile: A case study. PLoS One, 12(4), e0175817.
Smith, T. J., Campbell, R. E., & Drake, M. A. (2016). Sensory properties of milk protein ingredients. In Advanced Dairy Chemistry (pp. 197-223). Springer, New York, NY.
Sousa, S. G., Delgadillo, I., & Saraiva, J. A. (2016). Human milk composition and preservation: evaluation of high-pressure processing as a nonthermal pasteurization technology. Critical reviews in food science and nutrition, 56(6), 1043-1060.
Spatz, D. L. (2018). Pasteurized donor human milk and milk banking through the Human Milk Banking Association of North America. Journal of Obstetric, Gynecologic & Neonatal Nursing, 47(4), 545-546.
Speckhahn, A., Srzednicki, G., & Desai, D. K. (2010). Drying of beef in superheated steam. Drying Technology, 28(9), 1072-1082.
Terpstra, F. G., Rechtman, D. J., Lee, M. L., Hoeij, K. V., Berg, H., Engelenberg, F. A. V., & Wout, A. B. V. T. (2007). Antimicrobial and antiviral effect of high-temperature short-time (HTST) pasteurization applied to human milk. Breastfeeding Medicine, 2(1), 27-33.
Tran, M. T. T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science & Emerging Technologies, 5(4), 495-502.
Viazis, S., Farkas, B. E., & Allen, J. C. (2007). Effects of high-pressure processing on immunoglobulin A and lysozyme activity in human milk. Journal of human Lactation, 23(3), 253-261.
Viazis, S., Farkas, B. E., & Jaykus, L. A. (2008). Inactivation of bacterial pathogens in human milk by high-pressure processing. Journal of food protection, 71(1), 109-118.
Vincenzetti, S., Cecchi, T., Perinelli, D. R., Pucciarelli, S., Polzonetti, V., Bonacucina, G., & Vallesi, P. (2018). Effects of freeze-drying and spray-drying on donkey milk volatile compounds and whey proteins stability. LWT, 88, 189-195.
Vincenzetti, S., Savini, M., Cecchini, C., Micozzi, D., Carpi, F., Vita, A., & Polidori, P. (2011). Effects of lyophilization and use of probiotics on donkey's milk nutritional characteristics. International Journal of Food Engineering, 7(5).
Visentainer, J. V., Santos, O. O., Maldaner, L., Zappielo, C., Neia, V., Visentainer, L., & Galuch, M. (2018). Lipids and Fatty Acids in Human Milk: Benefits and Analysis. Biochemistry and Health Benefits of Fatty Acids.
Vishali, D. A., Monisha, J., Sivakamasundari, S. K., Moses, J. A., & Anandharamakrishnan, C. (2019). Spray freeze drying: Emerging applications in drug delivery. Journal of Controlled Release, 300, 93-101.
Zhu, D., Kebede, B., Chen, G., McComb, K., & Frew, R. (2020). Impact of freeze-drying and subsequent storage on milk metabolites based on 1H NMR and UHPLC-QToF/MS. Food Control, 116, 107017.
Ziaee, A., Albadarin, A. B., Padrela, L., Femmer, T., O'Reilly, E., & Walker, G. (2019). Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. European Journal of Pharmaceutical Sciences, 127, 300-318.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Matheus Campos Castro; Eloize Silva Alves; Bruno Henrique Figueiredo Saqueti; Patrícia Magalhães Souza ; Luciana Pelissari Manin; Roberta da Silveira; Grasiele Scaramal Madrona; Oscar Oliveira Santos; Jesui Vergilio Visentainer
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.