Análisis por PCR del efecto de la terapia fotodinámica sobre tumores de mama

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20468

Palabras clave:

Cáncer; Expresión genética; Terapia fotodinâmica.

Resumen

La terapia fotodinámica (TFD) es una modalidad terapéutica prometedora para el tratamiento del cáncer, incluidos los tumores de mama. El daño oxidativo causado por la TFD culmina en la muerte celular, la inducción de la respuesta inmune y la consiguiente destrucción del tumor. Este estudio tuvo como objetivo evaluar el perfil de expresión genética de los genes BCL-2, BAX y HER-2 y sus proteínas después de TFD, asociándolo con necrosis causada por esta terapia bajo diferentes fluencias. Veintiocho ratas recibieron una dosis única de 7,12 7,12 - dimetilbenzantraceno (DMBA - 80 mg / kg), por sonda, para la inducción del tumor de mama. Después del crecimiento tumoral, los animales se dividieron en cuatro grupos: G1 - grupo control - tumor de mama no tratado - y grupos G2, G3 y G4 tratados con PDT utilizando Photogem@ como fotosensibilizador intersticial e irradiación, con fluencias de 50J/cm, 100J/cm y 150J/cm, respectivamente. Se recogieron muestras tumorales para su examen histológico mediante RT-qPCR. RT-qPCR mostró que el perfil de expresión genética de BCL-2, BAX y HER-2 no se alteró después de la TFD. Se observó necrosis hemorrágica y un daño vascular y celular cualitativamente mayor y se correlacionaron positivamente con la fluidez. TFD no parece inducir la modulación de genes relacionados con la apoptosis. Los resultados indican que el tipo de muerte celular estimulada por la TFD en el tumor de mama es la necrosis.

Citas

Ahmed, A., Ali, A., Ali, S., Ahmad, A., Philip, P & Sarkar, F. (2012). Breast Cancer Metastasis and Drug Resistance, 1–18.

Alteri, R., Barnes, C., Burke, A., et al. (2013). American cancer society. Breast Cancer Facts & Figures, 2013-2014.

Appert-Collin, A. et al. (2015). Role of ErbB receptors in cancer cell migration and invasion. Frontiers in Pharmacology, 6, 1–10.

Barros, A. C. S. D., Muranaka, E. N. K., Mori, J. L., et al. (2004). Induction of experimental mammary carcinogenesis in rats with 7,12 Dimethylbenz(a)anthracene. Rev. Hosp. Clín. 59, 257-261.

Chiu, S. M., Xue, L.Y., Usuda, J., Azizuddin, K., & Oleinick, N. L. (2003). Bax is essential for mitochondrion-mediated apoptosis but not for cell death caused by photodynamic therapy. Brit. J. Cancer; 89, 1590-1597.

Diwu, Z., & Lown, J. W. (1990). Hypocrellins and their use in photosensitization. Photochem. Photobiol. 52, 609-616.

Duanmu, J. et al. (2011). Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy. British journal of cancer, 104, 9, 1401–1409.

Fang, Y., Tian, S., Pan, Y., Li, W., Wang, Q., Tang, Y., Yu, T., et al. (2020). Pyroptosis: A new frontier in cancer. Biomedicine & Pharmacotherapy, 121,1095952.

Ferreira, I., Ferreira, J., Vollet-Filho, J. D., et al. (2012). Photodynamic therapy for the treatment of induced mammary tumor in rats. Lasers Med. Sci. 28, 571-577. DOI 10.1007/s10103-012-1114-3.

George, B. P. A. & Abrahamse, H. (2016). A Review on Novel Breast Cancer Therapies Photodynamic Therapy. Anti-Cancer Agents in Medicinal Chemistry, 16, 793–801.

Graham, A., Li, G., Chen, Y. et al. (2003). Structure–activity relationship of new octaethylporphyrin-based benzochlorins as photosensitizers for photodynamic therapy. Photochem Photobiol, 77,561–566.

Halder, M., Chowdhury, P., Gordon, M., & Petrich, J. (2005). Hypericin and its perylene quinone analogs: probing structure, dynamics, and interactions with the environment. Adv. Photochem. 28. 10.1002/0471714127.ch1

Heffelfinger, S. C., Gear, R. B., Taylor, K. et al. (2000). DMBA-induced mammary pathologies are angiogenic in vivo and in vitro. Lab. Invest. 80, 485-92.

Hicks, D. G., & Kulkarni, S. (2008). HER2+ Breast Cancer: Review of Biologic Relevance and Optimal Use of Diagnostic Tools. Am. J. Clin. Pathol. 129, 263-273.

Itoh, M., Chiba, H., Noutomi, T., Takada, E. & Mizuguchi, J. (2000). Cleavage of Bax-alpha and Bcl-x (L) during carboplatin-mediated apoptosis in squamous cell carcinoma cell line. Oral Oncol. 36, 277-285.

Karim, B. O., Ali, S. Z., Landolfi, J. A., et al. (2008). Cytomorphologic differentiation of benign and malignant mammary tumors in fine needle aspirate specimens from irradiated female Sprague-Dawley rats. Vet. Clin. Pathol. 37, 229-236.

Kessel, D. & Arroyo, A. S. (2007). Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage. Photoch. Photobio. Sci. 6, 1290-1295.

Kocdor, H., Cehreli, R., Kocdor, M. A., Sis, B., Yilmaz, O., Canda, T., Demirkan, B., Resmi, H., Alakavuklar, M. & Harmancioglu, O. (2000). Toxicity induced by the chemical carcinogen 7,12-dimethylbenz[a]anthracene and the protective effects of selenium in Wistar rats. J. Toxicol. Env. Heal. A. 68, 693-701.

Koval, J., Mikes, J., Jendzelovsky, R., Kello, M., Solar, P. & Fedorocko, P. (2010). Degradation of HER2 Receptor Through Hypericin-mediated Photodynamic Therapy. Photochem Photobiol, 86, 200-205.

Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods. 25, 402-408.

Luo, Y. & Kessel, D. (1997). Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 66:479–483 20.

Martinez-Carpio, P. A. & Trelles, M. A. (2010). The role of epidermal growth factor receptor in photodynamic therapy: a review of the literature and proposal for future investigation. Lasers Med. Sci. 25, 767-771.

Najafov, A., Hongbo, C., & Yuan, J. (2017). Necroptosis and Cancer. Trends Cancer, 3, 4, 294–301. 10.1016/j.trecan.2017.03.002.

Oleinick, N. L.& Evans, H. H. (1998). The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat. Res.,150, 146-156.

Peng, Q., Moan, J & Nesland, J.M. (1996). Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol, 20, 109–129.

Perlin, D. S., Murant, R. S., Gibson, S. L. & Hilf, R. (1985). Effects of Photosensitization by Hematoporphyrin Derivative on Mitochondria Adenosine Triphosphatase-mediated Proton Transport and Membrane Integrity of R3230AC Mammary Adenocarcinoma. Cancer Res. 45, 653-658.

Pitta, M. G. R., Silva, R. P. S. & Alves, G. V. S. (2021). Nanocarreadores aplicados ao tratamento do câncer de mama. Research, Society and Development, 10, 10, http://dx.doi.org/10.33448/rsd-v10i10.18966.

Russo, J & Russo, I. H. (1996). Experimentally induced mammary tumors in rats. Breast Cancer Res. Tr., 39, 7-20.

Russo, J. & Russo, I. H. (2000). Atlas and histologic classification of tumors of the rat mammary gland. J. Mammary Gland. Biol. 5, 187-200.

Russo, J., Russo, I. H., Rogers, A.E., Van Zwieten, M. J. & Gusterson, B. A. (1990) Tumors of the mammary gland. IARC Scientific Publications. 99, 47-78.

Senderowicz, A. M. (2004). Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell. Biol. 16, 670-678.

Silva, J. C., Ferreira-Strixino, J., Fontana, L. C., Paula, L. M., Raniero, L., Martin A. A., Canevari, R. (2014). A. Apoptosis-associated genes related to photodynamic therapy in breast carcinomas. Lasers Med Sci, 29, 1429–1436.

Srivastava, M., Ahmad, N., Gupta, S. & Mukhtar, H. (2001). Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis. J. Biol. Chem. 276, 15481-15488.

Ströbl, S., Domke, M., Rühm, A. & Srok, R. (2014). Investigation of non-uniformly emitting optical fiber diffusers on the light distribution in tissue. Biomedical Optics Express, 11, 7.

Teiten, M. H., Bezdetnaya, L., Morlière, P., Santus, R. & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are de preferential sites of Foscan localization in cultured tumor cells. Brit J Cancer, 88, 1, 146-152.

Terada, S., Uchide, K., Suzuki, N., Akasofu, K. & Nishida, E. (1995). Induction of ductal carcinomas by intaductal administration of 7,12 dimethylbenz(a)anthracene in Wistar rats. Breast Cancer Res. Tr., 34, 35-43.

Usuda, J., Azizuddin, K., Chiu, S., & Oleinick, N. L. (2003). Association between the photodynamic loss of Bcl-2 and the sensitivity to apoptosis caused by phthalocyanine photodynamic therapy. Photochem. Photobiol. 78, 1-8.

Vohra N., Chavez, T., Troncoso, J. R., Rajaram, N., Wu, J., Coan P. N., Jackson, T. A., Bailey, K. & El-Shenawee M. (2021). Mammary tumors in Sprague Dawley rats induced by N-ethyl-N-nitrosourea for evaluating terahertz imaging of breast cancer. J. Med. Imag., 8, 2, https://doi.org/10.1117/1.JMI.8.2.023504

Wyld, L.; Reed, M. W. & Brown, N. J. (2001). Differential cell death response to photodynamic therapy is dependent on dose and cell type. British journal of cancer, 84, 10, p. 1384–1386.

Xue, L.Y., Chiu, S. M. & Oleinick, N. (2001). Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogen. 20, 3420-3427.

Yeh, K. T., Chang, J. G., Lin, T. H., Wang, Y.F., Tien, N., Chang, J.Y., et al. (2003). Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol Rep, 10, 659–663.

Zheng, H. et al. (2019). Elevated serum HER-2 predicts poor prognosis in breast cancer and is correlated to ADAM10 expression. Cancer Medicine, 8, 2, 679–685.

Descargas

Publicado

26/09/2021

Cómo citar

FERREIRA, I.; SILVA, G. N. da .; FERREIRA-STRIXINO, J.; GRECCO, C. .; BAGNATO, V. S. .; SALVADORI, D. M. F. .; PINTO, J. G. .; ROCHA, N. S. Análisis por PCR del efecto de la terapia fotodinámica sobre tumores de mama. Research, Society and Development, [S. l.], v. 10, n. 12, p. e459101220468, 2021. DOI: 10.33448/rsd-v10i12.20468. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20468. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud