Proyecto de un sistema inteligente para diagnosticar el estado operativo de un prototipo de helicóptero mediante análisis de vibraciones

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20546

Palabras clave:

Análisis de vibraciones; Helicóptero; Red artificial neutral; Vuelo por delante.

Resumen

En el vuelo hacia adelante, las cargas del viento afectan los helicópteros y provocan vibración. Este artículo analiza el comportamiento de un prototipo de helicóptero compuesto por dos palas cuando se somete a una carga de viento en contra, similar a la condición de vuelo de avanzo. Una Red Neuronal Artificial (RNA) procesa los datos experimentales para identificar el patrón de su comportamiento dinámico. Las pruebas condujeron al análisis de vibración para diferentes velocidades del viento. Además, los datos indican que la amplitud de vibración aumenta cuando las palas se someten a la excitación en la frecuencia fundamental y su primer armónico en pruebas realizadas sin inclinación del plano del rotor (vuelo estacionario). Por otro lado, la segunda prueba somete al prototipo a una inclinación de 5 grados sobre el disco del rotor. En esta prueba, la amplitud de vibración disminuyó en la frecuencia fundamental, y la amplitud relacionada con el primer armónico aumentó. La RNA alcanzó 100% de eficiencia en el reconocimiento de las condiciones de vuelo del prototipo.

Citas

Bramwell, A. R. S., Done, G., & Balmford, D. (2001). Bramwell’s helicopter dynamics (Butterworth-Heinemann (ed.); Second). Butterworth-Heinemann.

Cavicchi, T. J. (1999). Digital Signal Processing. In John Wiley & Sons. JOHN WILEY & SONS. https://doi.org/978-0471124726

CENIPA. (2017). Helicópteros sumário estatístico 2008-2017. https://www2.fab.mil.br/cenipa/

Ceruti, A., Liverani, A., & Recanatesi, L. (2011). Improving Helicopter Flight Simulation with Rotor Vibrations. Proceedings of the IMProVe 2011 International Conference on Innovative Methods in Product Design, 636–645.

RTCA DO-160C, Pub. L. No. RTCA DO-160C, 33 (2014). http://do160.org/wp-content/uploads/RTCA-DO-357-Abstract-DO-160G-Guideline.pdf

Damy, L. F. (2006). Análise do Espectro de Frequência de Vibração da Aeronave Esquilo AS-355 F2. Istituto Tecnológico de Aeronáutica, São José dos Campos - SP.

De Gregorio, F. (2012). Flow field characterization and interactional aerodynamics analysis of a complete helicopter. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2011.11.002

Doebelim, E. O. (1995). Engineering experimentation: planning, execution, reporting. Mcgraw-Hill Companies.

Dong, Y. (2018). An application of Deep Neural Networks to the in-flight parameter identification for detection and characterization of aircraft icing. Aerospace Science and Technology, 77, 34–49. https://doi.org/10.1016/j.ast.2018.02.026

EASA. (2020). Annual Safety Review 2020. https://doi.org/10.2822/147804

EASA. (2021). Reduction in accidents caused by failures of critical rotor and rotor drive components through improved vibration health monitoring systems, RMT. 0711 (Issue 1). https://www.easa.europa.eu/sites/default/files/dfu/ToR RMT.0711 Issue 1.pdf

FAA. (2012a). FAA-H-8083-21A: Helicopter Flying Handbook. In U. S. D. of Transportation (Ed.), FAA-H-8083-21A. FAA.

FAA. (2012b). Helicopter Flying Handbook (Federal Aviation Administration (ed.)). Federal Aviation Administration. www.faa.gov

Ford, T. (1999). Vibration reduction and monitoring. Aircraft Engineering and Aerospace Technology, 71(1), 21–24. https://doi.org/10.1108/00022669910252105

Glowacz, A. (2018). Acoustic-based fault diagnosis of commutator motor. Electronics (Switzerland), 7(11). https://doi.org/10.3390/electronics7110299

Glowacz, A., Glowacz, W., Glowacz, Z., & Kozik, J. (2018). Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement: Journal of the International Measurement Confederation, 113(May 2017), 1–9. https://doi.org/10.1016/j.measurement.2017.08.036

Johnson, W. (1994). HELICOPTER THEORY (3rd ed.). Dover Publications.

Nguyen, D. H., Liu, Y., & Mori, K. (2018). Experimental Study for Aerodynamic Performance of Quadrotor Helicopter. Transactions of the Japan Society for Aeronautical and Space Sciences, 61(1), 29–39. https://doi.org/10.2322/tjsass.61.29

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. In Metodologia da Pesquisa Científica. Santa Maria: UAB/NTEW/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Sadegh, H., Mehdi, A. N., & Mehdi, A. (2016). Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm. Tribology International, 95, 426–434. https://doi.org/10.1016/j.triboint.2015.11.045

Sanz, J., Perera, R., & Huerta, C. (2012). Gear dynamics monitoring using discrete wavelet transformation and multi-layer perceptron neural networks. Applied Soft Computing Journal, 12(9), 2867–2878. https://doi.org/10.1016/j.asoc.2012.04.003

Saravanan, N., & Ramachandran, K. I. (2010). Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Systems with Applications, 37(6), 4168–4181. https://doi.org/10.1016/j.eswa.2009.11.006

Silva, I. N., Spatti, D. H., & Flauzino, R. A. (2010). Redes Neurais Artificiais Para Engenharia e Ciências Aplicadas. In ArtLiber (Ed.), São Paulo: Artliber (2o). Artliber.

Straub, F. K., Anand, V. R., Lau, B. H., & Birchette, T. S. (2018). Wind tunnel test of the SMART active flap rotor. Journal of the American Helicopter Society, 63(1), 1–16. https://doi.org/10.4050/JAHS.63.012002

Stupar, S., Simonović, A., & Jovanović, M. (2012). Measurement and Analysis of Vibrations on the Helicopter Structure in Order to Detect Defects of Operating Elements. Scientific Technical Review, 62(1), 58–63.

Vance, J., Zeidan, F., & Murphy, B. (2010). Machinery Vibration and Rotordynamics. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470903704.fmatter

Waqar, T., & Demetgul, M. (2016). Thermal analysis MLP neural network based fault diagnosis on worm gears. Measurement: Journal of the International Measurement Confederation, 86, 56–66. https://doi.org/10.1016/j.measurement.2016.02.024

Wu, J. Da, & Chan, J. J. (2009). Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network. Expert Systems with Applications, 36(5), 8862–8875. https://doi.org/10.1016/j.eswa.2008.11.020

Zagaglia, D., Zanotti, A., & Gibertini, G. (2018). Analysis of the loads acting on the rotor of a helicopter model close to an obstacle in moderate windy conditions. Aerospace Science and Technology, 78, 580–592. https://doi.org/10.1016/j.ast.2018.05.019

Descargas

Publicado

22/09/2021

Cómo citar

OLIVEIRA NETO, J. M. de; OLIVEIRA, A. G. .; FIRMINO, J. V. L. de C.; RODRIGUES, M. C. .; SILVA, A. A.; CARVALHO, L. H. de. Proyecto de un sistema inteligente para diagnosticar el estado operativo de un prototipo de helicóptero mediante análisis de vibraciones. Research, Society and Development, [S. l.], v. 10, n. 12, p. e304101220546, 2021. DOI: 10.33448/rsd-v10i12.20546. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20546. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías