Modelos animales utilizados para estudiar la articulación temporomandibular: revisión de la literatura
DOI:
https://doi.org/10.33448/rsd-v10i12.20586Palabras clave:
Modelos Animales; Articulación Temporomadibular; Trastornos de la articulación temporomandibular.Resumen
La articulación temporomandibular (ATM) se considera una de las articulaciones más complejas del cuerpo humano. Está involucrado en múltiples funciones, incluidas la masticación y la fonación. Se considera una estructura extremadamente adaptativa. Varias patologías pueden afectar la ATM y resultar en disfunciones que interfieren significativamente en la vida de los pacientes. Los trastornos temporomandibulares (TTM) se asocian a una gran cantidad de etiologías. Los modelos experimentales animales representan una posibilidad para el estudio anatómico, histológico y fisiológico de esta estructura, la inducción de disfunciones y el establecimiento de tratamientos. El objetivo de esta revisión de la literatura es presentar y discutir el uso de modelos animales para el estudio de la ATM. La revisión de la literatura se llevó a cabo mediante una búsqueda bibliográfica en las bases de datos Pubmed (https://pubmed.ncbi.nlm.nih.gov/), Scielo (scielo.org) y Bireme (http://bvsalud.org). Según la revisión de la literatura, hasta ahora, ningún modelo animal es totalmente similar a la ATM humana. Esta característica representa un factor limitante en la investigación de posibles terapias quirúrgicas y no quirúrgicas para los TTM. Dado que no existe un modelo único, los investigadores deben elegir el modelo animal que más se aplica al objetivo del estudio a realizar.
Citas
Abdrabuh, A., Baljon, K., & Alyami, Y. (2020). Impact of estrogen therapy on temporomandibular joints of rats: Histological and hormone analytical study, The Saudi Dental Journal. In Press, Corrected Proof.
Abramowicz, S., Crotts, S. J., Hollister, S. J., & Goudy, S. (2021). Tissue-engineered vascularized patient-specific temporomandibular joint reconstruction in a Yucatan pig model. Oral Surgery, Oral Medicine, Oral Pathology And Oral Radiology, 132(2), 145-152.
Ali, A. M., & Sharawy, M. M. (1994). Histopathological changes in rabbit craniomandibular joint associated with experimentally induced anterior disk displacement (ADD). Journal of Oral Pathology & Medicine, 23(8), 364-374.
Almarza, A. J., Brown, B. N., Arzi, B., Ângelo, D. F., Chung, W., Badylak, S. F., & Detamore, M. (2018). Preclinical Animal Models for Temporomandibular Joint Tissue Engineering. Tissue engineering. Part B, Reviews, 24(3), 171–178.
Ângelo, D. F., Monje, F. G., González-García, R., Little, C. B., Mónico, L., Pinho, M., & Santos, F. A. et al. (2017). Bioengineered temporomandibular joint disk implants: study protocol for a two-phase exploratory randomized preclinical pilot trial in 18 black merino sheep (TEMPOJIMS). JMIR Research Protocols, 6(3), e37.
Angelo, D. F., Morouço, P., Alves, N., Viana, T., Santos, F., González, R., Monje, F., Macias, D., Carrapiço, B., Sousa, R., Cavaco-Gonçalves, S., Salvado, F., Peleteiro, C., & Pinho, M. (2016). Choosing sheep (Ovis aries) as animal model for temporomandibular joint research: Morphological, histological and biomechanical characterization of the joint disc. Morphologie: bulletin de l'Association des anatomistes, 100(331), 223–233.
Artuzi, F. E., Langie, R., Abreu, M. C., Quevedo, A. S., Corsetti, A., Ponzoni, D., & Puricelli, E. (2016). Rabbit model for osteoarthrosis of the temporomandibular joint as a basis for assessment of outcomes after intervention. The British Journal of Oral & Maxillofacial Surgery, 54(5), e33-e37.
Artuzi, F. E., Puricelli, E., Baraldi, C. E., Quevedo, A. S., & Ponzoni, D. (2020). Reduction of osteoarthritis severity in the temporomandibular joint of rabbits treated with chondroitin sulfate and glucosamine. PloS one, 15(4), e0231734.
Axelsson, S., Holmlund, A., & Hjerpe, A. (1992). An experimental model of osteoarthrosis in the temporomandibular joint of the rabbit. Acta Odontologica Scandinavica, 50(5), 273-280.
Basting, R. T., Napimoga, M. H., de Lima, J. M., de Freitas, N. S., & Clemente-Napimoga, J. T. (2021). Fast and accurate protocol for histology and immunohistochemistry reactions in temporomandibular joint of rats. Archives of Oral Biology, 126, 105115.
Berg R. (1973). Contribution to the applied and topographical anatomy of the temporomandibular joint of some domestic mammals with particular reference to the partial resp. total resection of the articular disc. Folia Morphologica, 21(2), 202-204.
Bermejo, A., González, O., & González, J. M. (1993). The pig as an animal model for experimentation on the temporomandibular articular complex. Oral Surgery, Oral Medicine, and Oral Pathology, 75(1), 18-23.
Ciochon, R. L., Nisbett, R. A., & Corruccini, R. S. (1997). Dietary consistency and craniofacial development related to masticatory function in minipigs. Journal of Craniofacial Genetics and Developmental Biology, 17(2), 96-102.
Cornish, R. J., Wilson, D. F., Logan, R. M., & Wiebkin, O. W. (2006). Trabecular structure of the condyle of the jaw joint in young and mature sheep: a comparative histomorphometric reference. Archives of Oral Biology, 51(1), 29-36.
Detamore, M. S., Athanasiou, K. A., & Mao, J. (2007). A call to action for bioengineers and dental professionals: directives for the future of TMJ bioengineering. Annals of Biomedical Engineering, 35(8), 1301-1311.
El-Hakim, I. E., Abdel-Hamid, I. S., & Bader, A. (2005). Tempromandibular joint (TMJ) response to intra-articular dexamethasone injection following mechanical arthropathy: a histological study in rats. Int J Oral Maxillofac Surg, 34(3), 305-10.
Embree, M. C., Iwaoka, G. M., Kong, D., Martin, B. N., Patel, R. K., Lee, A. H., & Nathan, J. M. et al. (2015). Soft tissue ossification and condylar cartilage degeneration following TMJ disc perforation in a rabbit pilot study. Osteoarthritis and Cartilage, 23(4), 629-639.
Fujita, S., & Hoshino, K. (1989). Histochemical and immunohistochemical studies on the articular disk of the temporomandibular joint in rats. Acta Anat, 134(1), 26-30.
Ghassemi Nejad, S., Kobezda, T., Tar, I., & Szekanecz, Z. (2017). Development of temporomandibular joint arthritis: The use of animal models. Joint bone spine, 84(2), 145–151.
Gulses, A., Bayar, G. R., Aydintug, Y. S., Sencimen, M., Erdogan, E., & Agaoglu, R. (2013). Histological evaluation of the changes in temporomandibular joint capsule and retrodiscal ligaments following autologous blood injection. Journal of Cranio-Maxillo-Facial Surgery, 41(4), 316-320.
Hakim, M. A., Guastaldi, F., Liapaki, A., Ahn, D. Y., Mueller, M. L., Troulis, M. J., & McCain, J. P. (2020). In vivo investigation of temporomandibular joint regeneration: development of a mouse model. International journal of oral and maxillofacial surgery, 49(7), 940–944.
Herring, S. W., Decker, J. D., Liu, Z. J., & Ma, T. (2002). Temporomandibular joint in miniature pigs: anatomy, cell replication, and relation to loading. The Anatomical Record, 266(3), 152-166.
Hu, Y., Yang, H. F., Li, S., Chen, J. Z., Luo, Y. W., & Yang, C. (2012). Condyle and mandibular bone change after unilateral condylar neck fracture in growing rats. International Journal of Oral and Maxillofacial Surgery, 41(8), 912-921.
Huang, L., Zhang, L., Li, H., Yan, J., Xu, X., & Cai, X. (2020). Growth pattern and physiological characteristics of the temporomandibular joint studied by histological analysis and static mechanical pressure loading testing. Archives of Oral Biology, 111, 104639.
Kalpakci, K. N., Willard, V. P., Wong, M. E., & Athanasiou, K. A. (2011). An interspecies comparison of the temporomandibular joint disc. Journal of Dental Research, 90(2), 193-198.
King, A. M., Cranfield, F., Hall, J., Hammond, G., & Sullivan, M. (2010). Radiographic anatomy of the rabbit skull with particular reference to the tympanic bulla and temporomandibular joint: Part 1: Lateral and long axis rotational angles. Veterinary Journal, 186(2), 232-243.
Kol, A., Arzi, B., Athanasiou, K. A., Farmer, D. L., Nolta, J. A., Rebhun, R. B., & Chen, X. et al. (2015). Companion animals: Translational scientist's new best friends. Science Translational Medicine, 7(308), 308-21.
Kuyinu, E. L., Narayanan, G., Nair, L. S., & Laurencin, C. T. (2016). Animal models of osteoarthritis: classification, update, and measurement of outcomes. Journal of orthopaedic surgery and research, 11, 19.
Kyllar, M., Paral, V., Pyszko, M., & Doskarova, B. (2017). Facial pillars in dogs: an anatomical study. Anatomical Science International, 92(3), 343-351.
Kyllar, M., Putnová, B., Jekl, V., Stehlík, L., Buchtová, M., & Štembírek, J. (2018). Diagnostic imaging modalities and surgical anatomy of the temporomandibular joint in rabbits. Laboratory Animals, 52(1), 38-50.
Lai, W. F., Tsai, Y. H., Su, S. J., Su, C. Y., Stockstill, J. W., & Burch, J. G. (2005). Histological analysis of regeneration of temporomandibular joint discs in rabbits by using a reconstituted collagen template. International Journal of Oral and Maxillofacial Surgery, 34(3), 311-320.
Ma, B., Sampson, W., Fazzalari, N., Wilson, D., & Wiebkin, O. (2002). Experimental forward mandibular displacement in sheep. Archives of Oral Biology, 47(1), 75-84.
Mazuqueli Pereira, E., Basting, R. T., Abdalla, H. B., Garcez, A. S., Napimoga, M. H., & Clemente-Napimoga, J. T. (2021). Photobiomodulation inhibits inflammation in the temporomandibular joint of rats. Journal of photochemistry and photobiology. B, Biology, 222, 112281.
Mills, D. K., Daniel, J. C., & Scapino, R. (1988). Histological features and in-vitro proteoglycan synthesis in the rabbit craniomandibular joint disc. Archives of Oral Biology, 33(3), 195-202.
Mizoguchi, I., Takahashi, I., Nakamura, M., Sasano, Y., Sato, S., Kagayama, M., & Mitani, H. (1996). An immunohistochemical study of regional differences in the distribution of type I and type II collagens in rat mandibular condylar cartilage. Archives of Oral Biology, 41(8-9), 863-869.
Monteiro, J., Guastaldi, F., Troulis, M. J., McCain, J. P., & Vasconcelos, B. (2021). Induction, Treatment, and Prevention of Temporomandibular Joint Ankylosis-A Systematic Review of Comparative Animal Studies. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 79(1), 109–132.e6.
Nicot, R., Barry, F., Chijcheapaza-Flores, H., Garcia-Fernandez, M. J., Raoul, G., Blanchemain, N., & Chai, F. (2021). A Systematic Review of Rat Models With Temporomandibular Osteoarthritis Suitable for the Study of Emerging Prolonged Intra-Articular Drug Delivery Systems. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons, 79(8), 1650–1671.
Porto, G. G., Vasconcelos, B. C., Andrade, E. S., & Silva-Junior, V. A. (2010). Comparison between human and rat TMJ: anatomic and histopathologic features. Acta Cir Bras, 25(3), 290-293.
Puricelli, E., Ponzoni, D., Munaretto, J. C., Corsetti, A., & Leite, M. G. (2012). Histomorphometric analysis of the temporal bone after change of direction of force vector of mandible: an experimental study in rabbits. Journal of Applied Oral Science, 20(5), 526-530. doi: 10.1590/s1678-77572012000500006
Puricelli, E., Artuzi, F. E., Ponzoni, D., & Quevedo, A. S. (2019). Condylotomy to Reverse Temporomandibular Joint Osteoarthritis in Rabbits. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons, 77(11), 2230–2244.
Sato, M., Tsutsui, T., Moroi, A., Yoshizawa, K., Aikawa, Y., Sakamoto, H., & Ueki, K. (2019). Adaptive change in temporomandibular joint tissue and mandibular morphology following surgically induced anterior disc displacement by bFGF injection in a rabbit model. Journal of Cranio-Maxillo-Facial Surgery, 47(2), 320-327.
Štembírek, J., Kyllar, M., Putnová, I., Stehlík, L., & Buchtová, M. (2012). The pig as an experimental model for clinical craniofacial research. Laboratory Animals, 46(4), 269-279.
Sun, Z., Liu, Z. J., & Herring, S. W. (2002). Movement of temporomandibular joint tissues during mastication and passive manipulation in miniature pigs. Archives of oral biology, 47(4), 293-305.
Vapniarsky, N., Aryaei, A., Arzi, B., Hatcher, D. C., Hu, J. C., & Athanasiou, K. A. (2017). The Yucatan minipig temporomandibular joint disc structure-function relationships support its suitability for human comparative studies. Tissue Engineering. Part C, Methods, 23(11), 700-709.
Voudouris, J. C., Woodside, D. G., Altuna, G., Angelopoulos, G., Bourque, P. J., Lacouture, C. Y., & Kuftinec, M. M. (2003). Condyle-fossa modifications and muscle interactions during Herbst treatment, Part 2. Results and conclusions. American Journal of Orthodontics and Dentofacial Orthopedics, 124(1), 13-29.
Weijs, W. A., Brugman, P., & Grimbergen, C. A. (1989). Jaw movements and muscle activity during mastication in growing rabbits. The Anatomical Record, 224(3), 407-416.
Xiang, T., Tao, Z. Y., Liao, L. F., Wang, S., & Cao, D. Y. (2021). Animal Models of Temporomandibular Disorder. Journal of pain research, 14, 1415–1430.
Yan, Y. B., Zhang, Y., Gan, Y. H., An, J. G., Li, J. M., & Xiao, E. (2013). Surgical induction of TMJ bony ankylosis in growing sheep and the role of injury severity of the glenoid fossa on the development of bony ankylosis. Journal of Cranio-Maxillo-Facial Surgery, 41(6), 476-486.
Yang, K., Wang, H. L., Dai, Y. M., Liang, S. X., Zhang, T. M., Liu, H., & Yan, Y. B. (2020). Which of the fibrous layer is more important in the genesis of traumatic temporomanibular joint ankylosis: The mandibular condyle or the glenoid fossa? Journal of Stomatology, Oral And Maxillofacial Surgery, 121(5), 517-522.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Milton Cristian Rodrigues Cougo; Alexandre Silva de Quevedo; Deise Ponzoni
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.