Pronóstico de casos de Dengue, Chikungunya y Zika en Recife, Brasil: un enfoque espacio-temporal basado en las condiciones climáticas, notificaciones de salud y aprendizaje de máquina

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20804

Palabras clave:

Pronóstico del dengue; Pronóstico de Chikungunya; Pronóstico del Zika; Predicción de arbovirus; Aprendizaje de máquina; Predicción de arbovírus.

Resumen

El dengue se ha convertido en un desafío para muchos países. Los arbovirus transmitidos por Aedes aegypti se han propagado rápidamente en las últimas décadas. La aparición de la fiebre chikungunya y Zika en América del Sur presenta nuevos desafíos para el monitoreo y control de vectores. Esta situación se agravó a partir de 2015 y 2016, con la rápida propagación del chikungunya, que provoca fiebre y debilidad muscular, y el virus Zika, relacionado con casos de microcefalia en recién nacidos y la aparición del síndrome de Guillain­Barret, una enfermedad autoinmune que afecta al sistema nervioso. El objetivo de este trabajo fue construir una herramienta para predecir la distribución de arbovirus transmitidos por el mosquito Aedesaegypti mediante la implementación de predictores de transmisión de dengue, zika y chikungunya basados en aprendizaje de máquina, con foco en redes neuronales de perceptrones multicamadas, máquinas de vector de soporte y modelos de regresión lineal. Como estudio de caso, investigamos modelos de predicción para predecir la distribución espacio­temporal de casos a partir de datos de notificación de salud primaria y variables climáticas (velocidad del viento, temperatura y lluvia) de Recife, Brasil, 2013 a 2016, incluido el brote de 2015. El uso de análises espacio­temporal por medio de perceptrones multicamadas y los resultados de las máquinas de vectores de soporte demostraron ser muy eficaces para predecir la distribución de los casos de arbovirus. Los modelos indican que las regiones sur y oeste de Recife fueron muy susceptibles a brotes en el período investigado. El enfoque propuesto puede ser útil para apoyar a los administradores de salud y epidemiólogos en la prevención de brotes de arbovirus transmitidos por Aedes aegypti y en la promoción de políticas públicas para promover la salud y el saneamiento.

Citas

Akil, L., & Ahmad, H. A. (2016). Salmonella infections modelling in Mississippi using neural network and geographical information system (GIS). BMJ Open, 6(3). Retrieved from https://bmjopen.bmj.com/content/6/3/e009255 doi: 10.1136/bmjopen­2015­009255

Baquero, O. S., Santana, L. M. R., & Chiaravalloti­Neto, F. (2018, 04). Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLOS ONE, 13(4), 1­12. Retrieved from https://doi.org/10.1371/journal.pone.0195065 doi: 10.1371/journal.pone.0195065

Barbosa, V. A. d. F., Gomes, J. C., de Santana, M. A., de Lima, C. L., Calado, R. B., Bertoldo Júnior, C. R., … others (2021). Covid­19 rapid test by combining a random forest­based web system and blood tests. Journal of Biomolecular Structure and Dynamics, 65, 1–20.

Beltrán, J. D., Boscor, A., dos Santos, W. P., Massoni, T., & Kostkova, P. (2018). ZIKA: A New System to Empower Health Workers and Local Communities to Improve Surveillance Protocols by E­learning and to Forecast Zika Virus in Real Time in Brazil. In Proceedings of the 2018 international conference on digital health (pp. 90–94).

Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., … others (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.

Cao­Lormeau, V.­M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., … others (2016). Guillain­Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case­control study. The Lancet, 387(10027), 1531–1539.

Commowick, O., Istace, A., Kain, M., Laurent, B., Leray, F., Simon, M., … others (2018). Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Scientific Reports, 8(1), 1–17.

Cordeiro, F. R., Santos, W. P., & Silva­Filho, A. G. (2016). A semi­supervised fuzzy growcut algorithm to segment and classify regions of interest of mammographic images. Expert Systems with Applications, 65, 116–126.

da Silva, C. C., de Lima, C. L., da Silva, A. C. G., Silva, E. L., Marques, G. S., de Araújo, L. J. B., … others (2021). Covid­19 dynamic monitoring and real­time spatio­temporal forecasting. Frontiers in Public Health, 9.

de Lima, C. L., da Silva, C. C., da Silva, A. C. G., Luiz Silva, E., Marques, G. S., de Araújo, L. J. B., … others (2020). COVID­SGIS: a smart tool for dynamic monitoring and temporal forecasting of Covid­19. Frontiers in Public Health, 8, 761.

de Lima, S. M., da Silva­Filho, A. G., & dos Santos, W. P. (2016). Detection and classification of masses in mammographic images in a multi­kernel approach. Computer methods and programs in biomedicine, 134, 11–29.

de Lima, T. F. M., Lana, R. M., de Senna Carneiro, T. G., Codeço, C. T., Machado, G. S., Ferreira, L. S., … Davis Junior, C. A. (2016). DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics. International Journal of Environmental Research and Public Health, 13(9), 920.

de Souza, R. G., dos Santos Lucas e Silva, G., dos Santos, W. P., & de Lima, M. E. (2021). Computer­aided diagnosis of Alzheimer’s disease by MRI analysis and evolutionary computing. Research on Biomedical Engineering, 37, 455–­483.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., Vapnik, V., et al. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161.

Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in bioinformatics using Weka. Bioinformatics, 20(15), 2479–2481.

Gubler, D. J. (2011). Dengue, urbanization and globalization: the unholy trinity of the 21st century. Tropical Medicine and Health, 39(4SUPPLEMENT), S3–S11.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

Haykin, S. (2001). Redes Neurais: Princípios e Prática. Porto Alegre: Bookman.

Jindal, A., & Rao, S. (2017). Agent­based modeling and simulation of mosquito­borne disease transmission. In Proceedings of the 16th conference on autonomous agents and multiagent systems (pp. 426–435).

Koche, J. C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Petrópolis, Rio de Janeiro, Brasil: Vozes.

Kostkova, P., dos Santos, W. P., & Massoni, T. L. (2019). ZIKA: improved surveillance and forecast of Zika virus in Brazil. European Journal of Public Health, 29(Supplement 4), 414­415, ckz186.085.

LaDeau, S. L., Allan, B. F., Leisnham, P. T., & Levy, M. Z. (2015). The ecological foundations of transmission potential and vector­borne disease in urban landscapes. Functional Ecology, 29(7), 889–901.

Laureano­Rosario, A. E., Duncan, A. P., Mendez­Lazaro, P. A., Garcia­Rejon, J. E., Gomez­Carro, S., Farfan­Ale, J., … MullerKarger, F. E. (2018). Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Tropical Medicine and Infectious Disease, 3(1), 5.

Ludke, M., & André, M. E. D. A. (2013). Pesquisas em educação: uma abordagem qualitativa. São Paulo, Brasil: EPU Editora Pedagógica e Universitária.

Mohammed, A., & Chadee, D. D. (2011). Effects of different temperature regimens on the development of aedes aegypti (l.)(diptera: Culicidae) mosquitoes. Acta Tropica, 119(1), 38–43.

Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue transmission: evidence and implications. Environmental health perspectives, 121(11­12), 1264–1272.

Musah, A., Rubio­Solis, A., Birjovanu, G., dos Santos, W. P., Massoni, T., & Kostkova, P. (2019). Assessing the Relationship between various Climatic Risk Factors & Mosquito Abundance in Recife, Brazil. In Proceedings of the 9th international conference on digital public health (pp. 97–100).

Padmanabhan, P., Seshaiyer, P., & Castillo­Chavez, C. (2017). Mathematical modeling, analysis and simulation of the spread of zika with influence of sexual transmission and preventive measures. Letters in Biomathematics, 4(1), 148–166.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, Rio Grande do Sul, Brasil: Universidade Federal de Santa Maria.

Pereira, J., Santana, M. A., Gomes, J. C., de Freitas Barbosa, V. A., Valença, M. J. S., de Lima, S. M. L., & dos Santos, W. P. (2021). Feature selection based on dialectics to support breast cancer diagnosis using thermographic images. Research on Biomedical Engineering, 37, 485–­506.

Pessanha, J. E. M., Caiaffa, W. T., César, C. C., & Proietti, F. A. (2009). Avaliação do plano nacional de controle da dengue. Cad. Saúde Pública, 25(7), 1637–1641.

Rubio­Solis, A., Musah, A., dos Santos, W. P., Massoni, T., Birjovanu, G., & Kostkova, P. (2019). ZIKA Virus: Prediction of Aedes Mosquito Larvae Occurrence in Recife (Brazil) using Online Extreme Learning Machine and Neural Networks. In Proceedings of the 9th international conference on digital public health (pp. 101–110).

Salathe, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C., … others (2012). Digital epidemiology. PLoS Computational Biology, 8(7), e1002616.

Santana, M. A. d., Pereira, J. M. S., Silva, F. L. d., Lima, N. M. d., Sousa, F. N. d., Arruda, G. M. S. d., … Santos, W. P. d. (2018). Breast cancer diagnosis based on mammary thermography and extreme learning machines. Research on Biomedical Engineering, 34, 45–53.

Siriyasatien, P., Chadsuthi, S., Jampachaisri, K., & Kesorn, K. (2018). Dengue epidemics prediction: A survey of the state­ofthe­art based on data science processes. IEEE Access, 6, 53757­53795.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

Witten, I. H., & Frank, E. (2005). Data mining: Pratical machine learning tools and technique. San Francisco, CA, USA: Morgan Kaufmann Publishers.

Yin, R. K. (2015). Estudo de caso: Planejamento e métodos. Porto Alegre, Brasil: Bookman.

Descargas

Publicado

26/09/2021

Cómo citar

SILVA, C. C. da; LIMA, C. L. de; SILVA, A. C. G. da; MORENO, G. M. M.; MUSAH, A.; ALDOSERY, A.; DUTRA, L.; AMBRIZZI, T.; BORGES, I. V. G.; TUNALI, M.; BASIBUYUK, S.; YENIGÜN, O.; JONES, K.; CAMPOS, L.; MASSONI, T. L.; SILVA FILHO, A. G. da; KOSTKOVA, P.; SANTOS, W. P. dos. Pronóstico de casos de Dengue, Chikungunya y Zika en Recife, Brasil: un enfoque espacio-temporal basado en las condiciones climáticas, notificaciones de salud y aprendizaje de máquina. Research, Society and Development, [S. l.], v. 10, n. 12, p. e452101220804, 2021. DOI: 10.33448/rsd-v10i12.20804. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20804. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud