Influencia del molino vibratorio en las propiedades del ZnO procesado por molienda de alta energía
DOI:
https://doi.org/10.33448/rsd-v10i12.20855Palabras clave:
Molienda de Alta Energia; Nanopartículas; Óxido de Zinc; Refinamiento Rietveld.Resumen
Este trabajo evalúa cómo la molienda de bolas de alta energía (MAE) en un molino agitador influye en las propiedades ópticas, físicas y microestructurales del ZnO. El procedimiento también combina la inclusión de Fe del medio de molienda con la reducción del tamaño de las partículas. El ZnO fue molido durante 1, 2, 3, 4 y 5 h, lo que resultó en una reducción del tamaño de las partículas hasta la escala nanométrica, con un tamaño medio en torno a los 50 nm, y a una reducción del tamaño de los cristalitos tres veces mayor cuando se procesó a partir de las 4 h. La molienda demostró ser un proceso eficaz para obtener nanopartículas con un tiempo de procesamiento increíblemente corto y cambió la morfología de las partículas de formas aleatorias hasta esféricas. Los resultados también indican que el procesamiento amplió progresivamente la estructura hexagonal del ZnO debido a la tensión impuesta y a la inclusión de Fe, lo que puede ayudar a disminuir el bandgap y a reducir la tasa de recombinación de los pares electrón-hueco, mejorando la actividad de fotocatálisis. Los resultados ópticos mostraron que no apareció ninguna banda adicional y una disminución del bandgap de 3,37 a 3,21 eV. MAE también condujo a un aumento del valor c de 5,2076 a 5,2112 Å, que es uno de los factores más importantes para mejorar la actividad antibacteriana. El HEBM ha demostrado ser un proceso adecuado para la obtención de nanopartículas de ZnO con propiedades útiles para diversas aplicaciones.
Citas
Aimable, A., Goure Doubi, H., Stuer, M., Zhao, Z., & Bowen, P. (2017). Synthesis and Sintering of ZnO Nanopowders. Technologies, 5(2), 28. https://doi.org/10.3390/technologies5020028
Akhundi, A., & Habibi-Yangjeh, A. (2016). Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity. RSC Advances, 6(108), 106572–106583. https://doi.org/10.1039/c6ra12414c
Bégin-Colin, S., Gadalla, A., Le Caër, G., Humbert, O., Thomas, F., Barres, O., & Gilliot, P. (2009). On the origin of the decay of the photocatalytic activity of TiO 2 Powders ground at high energy. Journal of Physical Chemistry C, 113(38), 16589–16602. https://doi.org/10.1021/jp900108a
Chandekar, K. V., Shkir, M., Al-Shehri, B. M., AlFaify, S., Halor, R. G., Khan, A., & Hamdy, M. S. (2020). Visible light sensitive Cu doped ZnO: Facile synthesis, characterization and high photocatalytic response. Materials Characterization, 165(May), 110387. https://doi.org/10.1016/j.matchar.2020.110387
Chen, B., Xia, Z., & Lu, K. (2013). Understanding sintering characteristics of ZnO nanoparticles by FIB-SEM three-dimensional analysis. Journal of the European Ceramic Society, 33(13–14), 2499–2507. https://doi.org/10.1016/j.jeurceramsoc.2013.04.026
Chen, D., Wang, Z., Ren, T., Ding, H., Yao, W., Zong, R., & Zhu, Y. (2014). Influence of defects on the photocatalytic activity of ZnO. Journal of Physical Chemistry C, 118(28), 15300–15307. https://doi.org/10.1021/jp5033349
Choi, Y. I., Jung, H. J., Shin, W. G., & Sohn, Y. (2015). Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities. Applied Surface Science, 356(November), 615–625. https://doi.org/10.1016/j.apsusc.2015.08.118
Cooper, N. D. (2015). Complete Kinetic and Mechanistic Decomposition of Zinc Oxalate with Characterization of Intermediates and Final Oxide. Proceedings of the National Conference of Undergraduate Research.
Dias, J. A., Arantes, V. L., Ramos, A. S., Giraldi, T. R., Minucci, M. Z., & Maestrelli, S. C. (2016). Characterization and photocatalytic evaluation of ZnO–Co3O4 particles obtained by high energy milling. Part II: Photocatalytic properties. Ceramics International, 42(2), 3485–3490. https://doi.org/10.1016/j.ceramint.2015.10.151
Dias, J. A., Oliveira, J. A., Renda, C. G., & Morelli, M. R. (2018). Production of Nanometric Bi4Ti3O 12 Powders: from Synthesis to Optical and Dielectric Properties. Materials Research, 21(5). https://doi.org/10.1590/1980-5373-mr-2018-0118
Dib, K., Trari, M., & Bessekhouad, Y. (2020). (S,C) co-doped ZnO properties and enhanced photocatalytic activity. Applied Surface Science, 505(July 2019), 144541. https://doi.org/10.1016/j.apsusc.2019.144541
Dutková, E., Sayagués, M. J., Briančin, J., Zorkovská, A., Bujňáková, Z., Kováč, J., & Ficeriová, J. (2016). Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. Journal of Materials Science, 51(4), 1978–1984. https://doi.org/10.1007/s10853-015-9507-x
Dzik, P., Svoboda, T., Kaštyl, J., & Veselý, M. (2019). Modification of photocatalyst morphology by ball milling and its impact on the physicochemical properties of wet coated layers. Catalysis Today, 328(July 2018), 65–70. https://doi.org/10.1016/j.cattod.2019.01.051
Fan, J. C., Sreekanth, K. M., Xie, Z., Chang, S. L., & Rao, K. V. (2013). p-Type ZnO materials: Theory, growth, properties and devices. Progress in Materials Science, 58(6), 874–985. https://doi.org/10.1016/j.pmatsci.2013.03.002
Gancheva, M. N., Iordanova, R. S., Dimitriev, Y. B., Avdeev, G. V., & Iliev, T. C. (2013). Effects of mechanical activation on structure and photocatalytic properties of ZnO powders. Central European Journal of Chemistry, 11(11), 1780–1785. https://doi.org/10.2478/s11532-013-0314-4
Georgeta, G., Marcela, S., Anda, P., Gratiela, I., & Alexandrina, F. (2015). Comparative study on the recovery of zinc, cadmium and lead cations from waste waters using precipitation method. XXIV, 155–162.
Gonçalves, N. P. F., Paganini, M. C., Armillotta, P., Cerrato, E., & Calza, P. (2019). The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation. Journal of Environmental Chemical Engineering, 7(6). https://doi.org/10.1016/j.jece.2019.103475
Güler, S. H., Güler, Ö., Evin, E., & Islak, S. (2016). Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik, 127(6), 3187–3191. https://doi.org/10.1016/j.ijleo.2015.12.103
Hernández, R. A. H., García, F. L., Cruz, L. E. H., & Luévanos, A. M. (2013). Iron removal from a kaolinitic clay by leaching to obtain high whiteness index. IOP Conference Series: Materials Science and Engineering, 45(1). https://doi.org/10.1088/1757-899X/45/1/012002
Jiang, J., Mu, Z., Xing, H., Wu, Q., Yue, X., & Lin, Y. (2019). Insights into the synergetic effect for enhanced UV/visible-light activated photodegradation activity via Cu-ZnO photocatalyst. Applied Surface Science, 478(January), 1037–1045. https://doi.org/10.1016/j.apsusc.2019.02.019
Khalid, N. R., Hammad, A., Tahir, M. B., Rafique, M., Iqbal, T., Nabi, G., & Hussain, M. K. (2019). Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceramics International, 45(17), 21430–21435. https://doi.org/10.1016/j.ceramint.2019.07.132
Kotha, V., Kumar, K., Dayman, P., & Panchakarla, L. S. (2021). Doping with Chemically Hard Elements to Improve Photocatalytic Properties of ZnO Nanostructures. Journal of Cluster Science, 3, 41–45. https://doi.org/10.1007/s10876-021-02115-3
Kumar, Pawan, & Kumar, R. (2021). Synthesis process of functionalized ZnO nanostructure for additive manufacturing: a state-of-the-art review. In Additive Manufacturing with Functionalized Nanomaterials. https://doi.org/10.1016/b978-0-12-823152-4.00002-8
Kumar, Promod, Kumar, A., Rizvi, M. A., Moosvi, S. K., Krishnan, V., Duvenhage, M. M., & Swart, H. C. (2020). Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Applied Surface Science, 514(February), 145930. https://doi.org/10.1016/j.apsusc.2020.145930
Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 88, 428–448. https://doi.org/10.1016/j.watres.2015.09.045
Lott, K., Nirk, T., Gorokhova, E., Türn, L., Viljus, M., Öpik, A., & Vishnjakov, A. (2015). High temperature electrical conductivity in undoped ceramic ZnO. Crystal Research and Technology, 50(1), 10–14. https://doi.org/10.1002/crat.201400138
Mayo, M. J., Hague, D. C., & Chen, D.-J. (1993). Processing nanocrystalline ceramics for applications in superplasticity. Materials Science and Engineering: A, 166(1–2), 145–159. https://doi.org/10.1016/0921-5093(93)90318-9
Mekprasart, W., Chutipaijit, S., Ravuri, B. R., & Pecharapa, W. (2020). Antibacterial activity of yellow zinc oxide prepared by high-energy ball milling technique. AIP Conference Proceedings, 2279(October). https://doi.org/10.1063/5.0027955
Morkoç, H., & Özgür, Ü. (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. https://doi.org/10.1002/9783527623945
Mote, V., Purushotham, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1), 6. https://doi.org/10.1186/2251-7235-6-6
Noman, M. T., Amor, N., & Petru, M. (2021). Synthesis and applications of ZnO nanostructures (ZONSs): a review. Critical Reviews in Solid State and Materials Sciences, 0(0), 1–43. https://doi.org/10.1080/10408436.2021.1886041
Otis, G., Ejgenberg, M., & Mastai, Y. (2021). Solvent-free mechanochemical synthesis of zno nanoparticles by high-energy ball milling of ε-zn(Oh)2 crystals. Nanomaterials, 11(1), 1–12. https://doi.org/10.3390/nano11010238
Pallone, E. M. de J. A., Trombini, V., Silva, K. L., Bernardi, L. O., Yokoyama, M., & Tomasi, R. (2010). Production and Characterization of Alumina-Diamond Composites and Nanocomposites. Advances in Science and Technology, 65, 16–20. https://doi.org/10.4028/www.scientific.net/AST.65.16
Phuah, X. L., Rheinheimer, W., Akriti, Dou, L., & Wang, H. (2021). Formation of liquid phase and nanostructures in flash sintered ZnO. Scripta Materialia, 195, 113719. https://doi.org/10.1016/j.scriptamat.2020.113719
Poornaprakash, B., Chalapathi, U., Subramanyam, K., Vattikuti, S. V. P., & Park, S. H. (2020). Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceramics International, 46(3), 2931–2939. https://doi.org/10.1016/j.ceramint.2019.09.289
Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., & Kumari, B. S. (2014). X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering, 04(01), 21–28. https://doi.org/10.4236/wjnse.2014.41004
Qin, X. J., Shao, G. J., Liu, R. P., & Wang, W. K. (2005). Sintering characteristics of nanocrystalline ZnO. Journal of Materials Science, 40(18), 4943–4946. https://doi.org/10.1007/s10853-005-3874-7
Reddy, I. N., Reddy, C. V., Sreedhar, M., Shim, J., Cho, M., & Kim, D. (2019). Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 240(October 2017), 33–40. https://doi.org/10.1016/j.mseb.2019.01.002
Salah, N., Habib, S. S., Khan, Z. H., Memic, A., Azam, A., Alarfaj, E., & Al-Hamedi, S. (2011). High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal of Nanomedicine, 6, 863–869. https://doi.org/10.2147/ijn.s18267
Saleh, R., Prakoso, S. P., & Fishli, A. (2012). The influence of Fe doping on the structural, magnetic and optical properties of nanocrystalline ZnO particles. Journal of Magnetism and Magnetic Materials, 324(5), 665–670. https://doi.org/10.1016/j.jmmm.2011.07.059
Samavati, A., Awang, A., Samavati, Z., Fauzi Ismail, A., Othman, M. H. D., Velashjerdi, M., & Rostami, A. (2021). Influence of ZnO nanostructure configuration on tailoring the optical bandgap: Theory and experiment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 263(August 2020), 114811. https://doi.org/10.1016/j.mseb.2020.114811
Schreyer, M., Guo, L., Thirunahari, S., Gao, F., & Garland, M. (2014). Simultaneous determination of several crystal structures from powder mixtures: the combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. Journal of Applied Crystallography, 47(2), 659–667. https://doi.org/10.1107/S1600576714003379
Šepelák, V., Bégin-Colin, S., & Le Caër, G. (2012). Transformations in oxides induced by high-energy ball-milling. Dalton Transactions, 41(39), 11927–11948. https://doi.org/10.1039/c2dt30349c
Shannon, R. D. (2011). Radii for All Species. http://abulafia.mt.ic.ac.uk/shannon/radius.php#R
Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais Da Academia Brasileira de Ciencias, 88(3), 1689–1698. https://doi.org/10.1590/0001-3765201620150713
Sharma, S., Pande, S. S., & Swaminathan, P. (2017). Top-down synthesis of zinc oxide based inks for inkjet printing. RSC Advances, 7(63), 39411–39419. https://doi.org/10.1039/c7ra07150g
Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2017). Fe3O4/ZnO/CoWO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity in degradation of different dye pollutants. Ceramics International, 43(3), 3063–3071. https://doi.org/10.1016/j.ceramint.2016.11.115
Silva, K. L., Bernardi, L. O., Yokoyama, M., Trombini, V., Cairo, C. A., & Pallone, E. M. J. A. (2008). Obtained of diamond nanometric powders using high energy milling for the production of alumina-diamond nanocomposites. Materials Science Forum, 591–593, 766–770. https://doi.org/10.4028/www.scientific.net/msf.591-593.766
Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1–2), 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9
Toporovska, L., Turko, B., Savchak, M., Seyedi, M., Luzinov, I., Kostruba, A., & Vaskiv, A. (2020). Zinc oxide: reduced graphene oxide nanocomposite film for heterogeneous photocatalysis. Optical and Quantum Electronics, 52(1), 1–12. https://doi.org/10.1007/s11082-019-2132-1
Wang, X., Zhu, Y., Huang, R., Mei, H., & Jia, Z. (2019). Flash sintering of ZnO ceramics at 50 °C under an AC field. Ceramics International, 45(18), 24909–24913. https://doi.org/10.1016/j.ceramint.2019.08.142
Williamson, G., & Hall, W. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22–31. https://doi.org/10.1016/0001-6160(53)90006-6
Wladimirsky, A., Palacios, D., María C. D’Antonio, González-Baró, A. C., & Baran, E. J. (2011). Vibrational spectra of the α-MIIC2O4⋅2H2O oxalato complexes, with MII = Co, Ni, Zn. Journal of the Argentine Chemical Society, 98, 71–77. https://doi.org/10.1107/S0108270104001945/sk1664sup1.cif
Yamamoto, O., Komatsu, M., Sawai, J., & Nakagawa, Z. E. (2004). Effect of lattice constant of zinc oxide on antibacterial characteristics. Journal of Materials Science: Materials in Medicine, 15(8), 847–851. https://doi.org/10.1023/B:JMSM.0000036271.35440.36
Yin, L., Zhang, D., Wang, J., Huang, J., Kong, X., Fang, J., & Zhang, F. (2017). Improving sunlight-driven photocatalytic activity of ZnO nanostructures upon decoration with Fe(III) cocatalyst. Materials Characterization, 127, 179–184. https://doi.org/10.1016/j.matchar.2017.03.004
Yokoyama, M. (2008). Dissertation Thesis - Obtenção e Caracterização de compósitos e nanocompositos de alumina-diamante. Universidade São Francisco.
Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports, 4, 4–11. https://doi.org/10.1038/srep04596
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ana Gabriela Storion; Eliria Maria de Jesus Agnolon Pallone; Tania Regina Giraldi; Sylma Carvalho Maestrelli
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.