Estudio de la influencia de la fuente de aluminio (acetato o sulfato) en la síntesis de la membrana cerámica y aplicaciones de emulsión aceite agua: uso y reutilización
DOI:
https://doi.org/10.33448/rsd-v10i13.21023Palabras clave:
Sulfato de aluminio; Acetato de alumínio; Membranas cerámicas; Emulsión aceite / agua; Reutilizar.Resumen
El objetivo de este trabajo fue preparar membranas cerámicas y evaluar el efecto de la materia prima sobre la membrana cerámica y sobre la eficiencia de la separación de la emulsión aceite / agua. Las membranas cerámicas se fabricaron mediante el método de compactación seca uniaxial, a partir de la descomposición térmica de sulfato de aluminio o acetato de aluminio, para evaluar el efecto de la materia prima (acetato de aluminio o sulfato de aluminio) sobre la eficiencia en la separación aceite / agua de la emulsión. Las membranas cerámicas se caracterizaron mediante mediciones de patrones de difracción de rayos X, microscopía electrónica de barrido, resistencia mecánica, punto de burbuja y flujo de agua. En este estudio, se produjeron membranas con diferentes características. Los valores encontrados para el permeado para la membrana A1 fueron 9,20 mg / L debido a características como porosidad y resistencia mecánica (44,63 % y 1,3 MPa), mientras que los valores de membrana A2 fueron 6,52 mg / L, 18,86% y 6,7 MPa. En conclusión, las membranas preparadas son eficaces para eliminar el aceite de las aguas residuales aceitosas. Según los resultados, el tratamiento de las emulsiones aceite-agua por microfiltración facilita una reducción significativa de la concentración de aceite permeado.
Citas
Ashaghi, K. S., Ebrahimi, M., & Czermak, P. (2007). Ceramic Ultra- and Nanofiltration Membranes for Oilfield Produced Water Treatment: A Mini Review. Open Environmental Sciences, 1, 1-8. https://10.2174/1876325100701010001
Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Cerâmica, 65, 531-540. https://doi.org/10.1590/0366-69132019653762676
Barbosa, A. S., Barbosa, A. S., Barbosa, T. L. A., & Rodrigues, M. G. F. (2018). Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil–water separation. Separation and Purification Technology, 200, 141–154. https://doi.org/10.1016/j.seppur.2018.02.001
Barbosa, T. L. A., Silva, F. M. N., Barbosa, A. S., Lima, E. G., & Rodrigues, M. G. F. (2020). Synthesis and application of a composite NaA zeolite/gamma-alumina membrane for oil-water separation process. Cerâmica, 66, 137-144. https://doi.org/10.1590/0366-69132020663782820
Bayat, A., Mahdavi, H. R., Kazemimoghaddam, M., & Mohammadi, T. (2016). Preparation and characterization of γ-alumina ceramic ultrafiltration membranes for pretreatment of oily wastewater. Desalination and Water Treatment, 57, 24322-24332. https://doi.org/10.1080/19443994.2016.1146922
Bilstad, T., & Espedal, E. (1996). Membrane separation of produced water. Water Science & Technology, 34, 239–246. https://doi.org/10.2166/wst.1996.0221
Burggraaf, A. J., & Cot, L. (1996). Fundamentals of Inorganic Membranes Science and Technology, series 4, 1st Ed., Elsevier Science B. V, Amsterdam.
Busca, G. (2014). Structural, Surface, and Properties of Aluminas. Chapter three. Advances in Catalysis, 57, 319-404. https://doi.org/10.1016/B978-0-12-800127-1.00003-5
Çakmakce, M., Kayaalp, N., & Koyuncu, I. (2008). Desalination of produced water from oil production fields by membrane processes. Desalination, 222, 176–186. https://doi.org/10.1016/j.desal.2007.01.147
Ebrahimi, M., Kerker, S., Schmitz, O., & Czermak, P. (2018). Evaluation of the fouling potential of ceramic membrane configurations designed for the treatment of oilfield produced water. Separation Science and Technology, 53, 349-363. https://doi.org/10.1080/01496395.2017.1386217
Evans, A., Strezov, V., & Evans, T. J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13, 1082–1088. https://doi:10.1016/j.rser.2008.03.008
Gallucci, F., Basile, A., & Hai, F. I. (2011). In: Membranes for membrane reactors: preparation, optimization and selection, Wiley, Chichester, UK.
He, Y., & Jiang, Z-W. (2008). Technology review: Treating oilfield wastewater. Filtration & Separation, 45, 14–16. https://doi.org/10.1016/S0015-1882(08)70174-5
Li, Y. S., Yan, L., Xiang, C. B., & Hong, L. J. (2006). Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination, 196, 76–83. https://doi.org/10.1016/j.desal.2005.11.021
Lodungi, J. F., Alfred, D. B., Khirulthzam, A. F. M., Binti Adnan, F. F. R., & Tellichandran, S. (2016). A Review in Oil Exploration and Production Waste Discharges According to Legislative and Waste Management Practices Perspective in Malaysia. International Journal of Waste Resources, 7, 1-8. https://doi:10.4172/2252-5211.1000260
Madaeni, S. S., Ahmadi Monfared, H., Vatanpour, V., Arabi Shamsabadi, A., Salehi, E., Daraei, P., Laki, S., & Khatami, S. M. (2012). Coke removal from petrochemical oily wastewater using γ-Al2O3 based ceramic microfiltration membrane. Desalination, 293 87–93. https://doi.org/10.1016/j.desal.2012.02.028
Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil-water separation: A review. Desalination, 357, 197–207. https://doi.org/10.1016/j.desal.2014.11.023
Pelovski, Y., Pietkova, W., Gruncharov, I., Pacewska, B., & Pysiak, J. (1992). The thermal decomposition of aluminum sulfate in different gas phase environments. Thermochimica Acta, 205, 219-224. https://doi.org/10.1016/0040-6031(92)85263-U
Qi, H., Niu, S., Jiang, X., & Xu, N. (2013). Enhanced performance of a macroporous ceramic support for nanofiltration by using α-Al2O3 with narrow size distribution. Ceramics International, 39, 2463–2471. https://doi.org/10.1016/j.ceramint.2012.09.004
Samaei, S. M., Gato-Trinidad, S., & Altaee, A. (2018). The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Separation and Purification Technology, 200, 198-200. http://hdl.handle.net/10453/122819
Santos, R. C. R., Pinheiro, A. N., Leite, E. R., Freire, V. R. N., Longhinotti, E., & Valentini, A. (2015). Simple synthesis of Al2O3 sphere composite from hybrid process with improved thermal stability for catalytic applications. Materials Chemistry and Physics, 160, 119-130. https://doi.org/10.1016/j.matchemphys.2015.04.014
Sato, T., Ikoma, S., & Ozawa, F. (1984). Thermal decomposition of organic basic aluminium salts—formate and acetate. Thermochimica Acta, 75, 129-137. https://doi.org/10.1016/0040-6031(84)85013-3
Sikdar, S. K., Criscuoli, A., in: Figoli & A. Criscuoli (Eds.) (2017). Sustainable Membrane Technology for Water and Wastewater Treatment, Springer Nature, Singapore Pte Ltd., 1-21.
Singh, R. (2015). Membrane Technology and Engineering for Water Purification. Second Edition, Application, Systems Design and Operation, Butterworth Heinemann, Oxford, UK, 81-178. https://doi.org/10.1016/B978-0-444-63362-0.00002-1
Suresh, K., Pugazhenthi, G., & Uppaluri, R. (2016). Fly Ash Based Ceramic Microfiltration Membranes for Oil-water Emulsion Treatment: Parametric Optimization using Response Surface Methodology. Journal of Water Process Engineering, 13, 27-43. https://doi.org/10.1016/j.jwpe.2016.07.008
Wegmann, M., Michen, B., & Graule, T. (2008). Nanostructured surface modification of microporous ceramics for efficient virus filtration. Journal of the European Ceramic Society, 28:1603-1612. https://doi.org/10.1016/j.jeurceramsoc.2007.11.002
Zaidi, A., Simms, K., & Kok, S. (1992). The Use of Micro/Ultrafiltration for the Removal of Oil and Suspended Solids from Oilfield Brines. Water Science & Technology, 25, 163–176. https://doi.org/10.2166/wst.1992.0245
Zhong, J., Sun, X., & Wang, C. (2003). Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Separation and Purification Technology, 32, 93-98. https://doi.org/10.1016/S1383-5866(03)00067-4
Zhong, Z., Xing, W., & Zhang, B. (2013). Fabrication of ceramic membranes with controllable surface roughness and their applications in oil/water separation. Ceramics International, 39, 4355–4361. https://doi.org/10.1016/j.ceramint.2012.11.019
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Antonielly dos Santos Barbosa; Antusia dos Santos Barbosa; Meiry Gláucia Freire Rodrigues
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.