Acoplamiento molecular del complejo de rutenio con epiisopiloturina y óxido nítrico contra la proteína de nucleoside diphosphate kinase de Leishmania

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i2.2121

Palabras clave:

Biología Computacional; Antiinfecciosos; Trypanosomatina

Resumen

La leishmaniasis es una enfermedad infecciosa que afecta a animales y humanos, causada por parásitos flagelados pertenecientes al género Leishmania, y puede presentarse en diferentes formas clínicas, dependiendo de la cepa infectante y la reacción inmune del huésped. Se estima que la enfermedad afecta a alrededor de 700,000 a 1 millón de personas, causando la muerte de 20 a 30,000 personas anualmente. Por lo tanto, el presente estudio tiene como objetivo realizar una simulación de acoplamiento molecular del complejo de rutenio con epiisopiloturina y óxido nítrico contra la proteína nucleósido difosfato quinasa de Leishmania amazonensis. La molécula 3D NDK se extrajo de la base de datos de proteínas y ácidos nucleicos PDB. La estructura molecular 3D del complejo Epiruno2 se diseñó utilizando el software gaussview 5.0. El proteína NDK y el complejo Epiruno2 fueron preparados para simulaciones de anclaje, donde NDK se consideró rígido y Epiruno2 se consideró flexible. El complejo Epiruno2 tenía una buena tasa de afinidad molecular con la proteína, lo que lo hacía atractivo para las pruebas experimentales de laboratorio para la proteína Leishmania NDK y NDK de otros patógenos; sin embargo, el fármaco miltefosina mostró baja afinidad molecular con el mismo proteína, corroborando los estudios en la literatura sobre la reducción de la eficacia de los medicamentos contra la leishmaniasis actuales.

Biografía del autor/a

Joabe Lima Araújo, Federal University of Maranhão

Department of the Natural Sciences / Chemistry Course

Gardênia Taveira Santos, State University of Maranhão

Department of Nursing

Lucas Aires de Sousa, Federal University of Maranhão

Graduate Department of Materials Science - PPGCM

Gabel Taveira Santos, University Center of Science and Technology of Maranhão

Department of Nursing

Welson de Freitas Silva, Federal University of Maranhão - UFMA

Department of the Natural Sciences / Chemistry Course

Alice de Oliveira Sousa, Federal University of Maranhão - UFMA

Department of the Natural Sciences / Chemistry Course

Jefferson Almeida Rocha, Federal University of Maranhão

Department of the Natural Sciences / Chemistry Course

Citas

Berman, H. M. et al. (2000). The Protein Data Bank. Nucleic Acids Res, 28:235-242.

Boucher, H. W. et al. (2009). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases, 48(1):1-12.

Cosconati, S. et al. (2010). Virtual screening with AutoDock: theory and practice. Expert opinion on drug discovery, 5(6):597-607.

Dennington, R.; Keith, T.; Millam, J. (2009). GaussView, Version 5.0. 8, R.

Frisch, M. J. et al. (2009). Gaussian 09, Revision D. 01, Gaussian. Inc.: Wallingford, CT.

Garbin, S. et al. (2015). Complexos de rutênio (II) contendo 2- mercaptoimidazol e derivados: síntese, caracterização e avaliação da atividade biológica.

Goodsell, D. S.; Morris, G. M.; Olson, A. J. (1996). Automated docking of flexible ligands: applications of AutoDock. Journal of Molecular Recognition, 9(1):1-5.

Kantor, J. D. et al. (1993). Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer research, 53(9):1971-1973.

Kasbekar, N. (2006). Tigecycline: a new glycylcycline antimicrobial agent. American journal of health-system pharmacy, 63(13):1235-1243.

Khamesipour, A. (2014). Therapeutic vaccines for leishmaniasis. Expert opinion on biological therapy, 14(11):1641-1649.

Kohn, W.; Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A):A1133.

Lacombe, M. L. et al. (2000). The human Nm23/nucleoside diphosphate kinases. Journal of bioenergetics and biomembranes, 32(3):247-258.

Macdonald, N. J. et al. (1993). A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential. Journal of Biological Chemistry, 268(34):25780-25789.

Macedo, T. S. et al. (2017). Platinum (ii)–chloroquine complexes are antimalarial agents against blood and liver stages by impairing mitochondrial function. Metallomics, 9(11):1548-1561.

Meng, Xuan-Yu. et al. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7(2):146-157.

Mishra, A. K. et al. (2017). Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. Journal of computer-aided molecular design, 31(6):547-562.

Morris, G. M. et al. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14):1639-1662.

Parks, R. E. et al. (1973). Purine metabolism in primitive erythrocytes. Comparative Biochemistry and Physiology--Part B: Biochemistry and, 45(2):355-364.

Perryman, A. L. et al. (2015). A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. Journal of chemical information and modeling, 55(3):645-659.

Ramos, R. M. et al. (2012). Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance. Journal of molecular modeling, 18(9):4013-4024.

Rocha, J. A. et al. (2018). Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PloS one, 13(6):e0198476.

Rojas, R. et al. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. The Journal of infectious diseases, 193(10):1375-1383.

Sánchez-delgado, R. A. et al. (1998). Toward a novel metal based chemotherapy against tropical diseases 4. Synthesis and characterization of new metal-clotrimazole complexes and evaluation of their activity against Trypanosoma cruzi. Inorganica chimica acta, 275:528-540.

Solis, F. J.; Wets, R. J.-B. (1981). Minimization by random search techniques. Mathematics of operations research, 6(1):19-30.

Srivastava, S. K.; Rajasree, K.; Gopal, B. (2011). Conformational basis for substrate recognition and regulation of catalytic activity in Staphylococcus aureus nucleoside di-phosphate kinase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814(10):1349-1357.

Theuretzbacher, U. (2009). Future antibiotics scenarios: is the tide starting to turn?. International journal of antimicrobial agents, 34(1):15-20.

WHO. Control of Leishmaniasis Report of a meeting of the WHO Committee of Experts on the Control of Leishmaniasis. 2019. Available from: http://www.who.int/mediacentre/factsheets/fs375/en/

Descargas

Publicado

01/01/2020

Cómo citar

ARAÚJO, J. L.; SANTOS, G. T.; SOUSA, L. A. de; SANTOS, G. T.; SILVA, W. de F.; SOUSA, A. de O.; ROCHA, J. A. Acoplamiento molecular del complejo de rutenio con epiisopiloturina y óxido nítrico contra la proteína de nucleoside diphosphate kinase de Leishmania. Research, Society and Development, [S. l.], v. 9, n. 2, p. e59922121, 2020. DOI: 10.33448/rsd-v9i2.2121. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2121. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias Exactas y de la Tierra