Biofortificación orgánica de cebolla por microalgas y ácido húmico
DOI:
https://doi.org/10.33448/rsd-v10i13.21432Palabras clave:
Allium cepa L.; Substancias húmicas; Agricultura orgânica; Scenedesmus subspicatus.Resumen
La biofortificación puede entenderse como una estrategia para aumentar los niveles de nutrientes en las estructuras comestibles de los vegetales, lo que puede interferir positivamente en la dieta humana. Los biofertilizantes son una opción interesante en los sistemas de producción alternativos, ya que pueden incrementar la calidad nutricional de los alimentos y contribuir al desarrollo de las plantas, al mismo tiempo que ayudan a mantener el medio ambiente como productos naturales. El uso de microalgas y ácido húmico como biofertilizantes apunta a mejoras en el contenido de nutrientes y biomoléculas en las plantas, pero su aplicación conjunta aún no se ha explorado. En este escenario, se realizó un estudio con cebollas sobre la influencia de aplicaciones vía inmersión radicular en soluciones de microalgas Scenedesmus subspicatus (Sc) y ácido húmico (HA), analizando posibles cambios en macro y micronutrientes, azúcares totales, azúcares reductores, sólidos solubles totales, aminoácidos libres totales, proteínas solubles y capacidad antioxidante en bulbos. Los tratamientos consistieron en sumergir las raíces de plántulas de dos cultivares de cebolla en soluciones que contenían microalgas y ácido húmico durante un minuto, y luego trasplantarlas al campo del sistema orgánico. Se utilizaron tres concentraciones: control, 0,3 g L-1 Sc + 0,3 g L-1 HA (3SH) y 0,6 g L-1 Sc + 0,6 g L-1 HA (6SH). Los resultados muestran que los tratamientos con microalgas con asociación de ácidos húmicos fueron capaces de incrementar el contenido de N, carbohidratos y proteínas solubles, aumentando también la actividad antioxidante en bulbos de cebolla.
Citas
Al-Fraihat, A. H. (2009). Effect of different nitrogen and sulphur fertilizer levels on growth, yield and quality of onion (Allium cepa L.). Jordan Journal of Agricultural Sciences, 5, 155-165.
Barański, M., Rempelos, L., Iversen, P. O., & Leifert, C. (2017). Effects of organic food consumption on human health; the jury is still out! Food & Nutrition Research, 61, 1-5. doi: 10.1080/16546628.2017.1287333
Bettoni, M. M., Mogor, Á. F., Pauletti, V.; Goicoechea, N.; Aranjuelo, I., & Garmendia, I. (2016). Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. Journal of Food Composition and Analysis, 51, 37-44. doi: 10.1016/j.jfca.2016.06.008
Billard, V., Etienne, P., Jannin, L., Garnica, M., Cruz, F., Garcia-Mina, J. M., & Ourry, A. (2014). Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). Journal of plant growth regulation, 33, 305-316. doi: 10.1007/s00344-013-9372-2
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. doi: 10.1016/0003-2697(76)90527-3
Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25–30. doi: 10.1016/S0023-6438(95)80008-5
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27. doi: 10.1016/j.scienta.2015.09.013
Conselvan, G. B., Pizzeghello, D., Francioso, O., Di Foggia, M., Nardi, S.; & Carletti, P. (2017). Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 420, 119-134. doi: doi.org/10.1007/s11104-017-3373-z
Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28, 2367–2377. doi: 10.1007/s10811-015-0775-2
Dias, J.S. (2012). Nutritional quality and health benefits of vegetables: a review. Food and Nutrition Sciences, 3, 1354-1374. doi: 10.4236/fns.2012.310179
Dineshkumar, R., Subramanian, J., Arumugam, A., Rasheeq, A. A., & Sampathkumar, P. (2018). Exploring the Microalgae Biofertilizer Effect on Onion Cultivation by Field Experiment. Waste and Biomass Valorization 11, 77-87. doi: 10.1007/s12649-018-0466-8
Du, C. X., Fan, H. F., Guo, S. R., & Tezuka, T. (2010). Applying spermidine for differential responses of antioxidant enzymes in cucumber subjected to short-term salinity. Journal of the American Society for Horticultural Science, 135, 18-24. doi: 10.21273/JASHS.135.1.18
FAO (2020). Food and Agriculture Organization of the United Nations .Retrived:27 jun 2020. http://www.fao.org/faostat/en/#data.
Hossain, M. B., Lebelle, J., Birsan, R., & Rai, D. K. (2018). Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach. Antioxidants 7: 175. doi: 10.3390/antiox7120175
Husein, M. E., El-Hassan, S. A., & Shahein, M. M. (2015). Effect of humic, fulvic acid and calcium foliar application on growth and yield of tomato plants. International Journal of Biosciences, 7, 132-140.
Karadeniz, F., Burdurlu, H. S., Koca, N., & Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetable grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297–303.
Kumar, K. S., Bhowmik, D., Chiranjib, B., & Tiwari, P. (2010). Allium cepa: A traditional medicinal herb and its health benefits. Journal of Chemical and Pharmaceutical Research, 2, 283-291.
Kurtz, C., Ernani, P. R., Pauletti, V., Menezes Junior, F. O. G., & Vieira Neto J. (2013). Produtividade e conservação de cebola afetadas pela adubação nitrogenada no sistema de plantio direto. Horticultura Brasileira, 31, 559-567. doi: 10.1590/S0102-05362013000400009
Leão, L. L., Antunes, B. A., Oliveira, C. A., Brito, M. F. S. F., & Pinho, L. D. (2018). Alimentos fontes de ferro e vitamina c consumidos entre lactentes da atenção primária à saúde. Cogitare Enfermagem, 23, 1-9. doi: 10.5380/ce.v23i2.51908
Lu, X., Wang, J., Al-Qadiri, H. M., Ross, C. F., Powers, J. R., Tang, J., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129(2), 637-644. doi:10.1016/j.foodchem.2011.04.105
Madail, J. C. M., Belarmino, L. C., & Bini, D. A. (2015). Evolução da produção e mercado de produtos orgânicos no Brasil e no Mundo. Rca-revista científica da ajes 2: 1-9.
Magné, C., & Larher, F. (1992). High sugar contente interferes with colorimetric determination of amino acids and free proline. Analytical Biochemistry, 200, 115-118. doi: 10.1016/0003-2697(92)90285-F
Maldonade, I. R., De Carvalho, P. G. B., & Ferreira. N. A. (2013). Protocolo para determinação de açúcares totais em hortaliças pelo método de DNS. Brasília, DF: Embrapa Hortaliças (Comunicado Técnico 85). 4 p.
Mallor, C., Balcells, M., Mallor, F., & Sales, E. (2011). Genetic variation for bulb size, soluble solids content and pungency in the Spanish sweet onion variety Fuentes de Ebro. Response toselection for lowpungency. Plant Breeding, 130, 55-59. doi: 10.1111/j.1439-0523.2009. 01737.x
Martins, A. P., & Reissmann, C. B. (2007). Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos. Scientia Agraria Paranaensis, 8, 1-17.
Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73,18-23. doi: 10.1590/0103-9016-2015-0006
O'hare, T.J. (2015). Biofortification of vegetables for the developed world. Acta Horticulturae, 1106, 1-8. Doi: 10.17660/ActaHortic.2015.1106.1
Puglisi, I., La Bella, E., Rovetto, E. I., Lo Piero, A. R., & Baglieri, A. (2020). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9, 123. doi: doi.org/10.3390/plants9010123
Ren, F., Reilly, K., Kerry, J. P., Gaffney, M., Hossain, M., & Rai, D. K. (2017). Higher antioxidant activity, total flavonols, and specific quercetinglucosides in two different onion (Allium cepa L.) varieties grown under organic production: Results from a 6-year study. Journal of Agricultural and Food Chemistry, 65, 5122–5132. doi: 10.1021/acs.jafc.7b01352
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology advances, 36, 1255-1273. doi: 10.1016/j.biotechadv.2018.04.004
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy, 9, 192. doi: 10.3390/agronomy9040192
Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O., & Nardi, S. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of chemical ecology, 36, 662-669. doi: 10.1007/s10886-010-9790-6
Shaaban, M.M. (2001). Green microalgae water extract as foliar feeding to wheat plants. Pakistan Journal of Biological Sciences, 4, 628–632.
Silva, F. D. A. S., & de Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11, 3733-3740. doi: 10.5897/AJAR2016.11522
Suleria, H. A. R., Butt, M. S., Anjum, F. M., Saeed, F., & Khalid, N. (2015). Onion: Nature protection against physiological threats. Critical reviews in food science and nutrition, 55, 50-66. doi: doi.org/10.1080/10408398.2011.646364
USDA. (2019). - United States Department of Agriculture Agricultural Research Service. National Nutrient Database for Standard Reference Legacy Release. Retrived, 27 Jun. 2020. https://ndb.nal.usda.gov/ndb/foods/show/11282?fgcd=&manu=&format=&count=&max=25&offset=&sort=default&or
Der=asc&qlookup=Onions%2C+raw&ds=&qt=&qp=&qa=&qn=&q=&ing=.
Vaccaro, S., Ertani, A., Nebbioso, A., Muscolo, A., Quaggiotti, S., Piccolo, A., & Nardi, S. (2015). Humic substances stimulate maize nitrogen assimilation and aminoacid metabolism at physiological and molecular level. Chemical and Biological Technologies in Agriculture, 2, 5. doi: 10.1186/s40538-015-0033-5
Vethamoni, P. I., & Gomathi, M. (2018). Effect of pre harvest treatments on quality and post-harvest losses of multiplier onion (Allium cepa L. var. aggregatum Don.). Journal of Pharmacognosy and Phytochemistry, 7, 2358-2362.
Vianna, D. T., Resende, G. F., Torres-Leal, F. L., & Tirapegui, J. (2010). Protein synthesis regulation by leucine. Brazilian Journal of Pharmaceutical Sciences, 46, 29-36.
Vidigal, S. M., Moreira, M. A.; & Pereira, P. R. G. (2010). Crescimento e absorção de nutrientes pela planta cebola cultivada no verão por semeadura direta e por transplantio de mudas. Bioscience Journal, 26, 59-70.
White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in plant science, 10, 586-593. doi: 10.1016/j.tplants.2005.10.001
Winters, A. L., Lloyd, J. D., Jones, R., & Merry, R. J. 2002. Evaluation of a rapid method for estimating free amino acids in silages. Animal feed science and technology, 99, 1-4. doi: 10.1016/S0377-8401(02)00112-8
Zhang, C., Zhang, H., & Zhan, Z. (2016). Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Frontiers in Plant Science , 7: 1425. doi:10.3389/fpls.2016.01425
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Luiz Gabriel Gemin; Gabriel Bocchetti de Lara; Átila Francisco Mógor; Gilda Mógor; Christiane de Queiroz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.