Evaluación de desempeño del sensor BH1750FVI (bajo custo) en la medida de radiación solar global

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.21779

Palabras clave:

Sensor de luminancia arduino; Radiación solar global; Sensor de bajo costo; Lúpulo; Sensor BH1750FVI; Arduino.

Resumen

El objetivo deste trabajo fue evaluar el desempeño del sensor de iluminancia BH1750FVI para medir la radiación solar global, utilizando un microcontrolador NodeMCU ESP8266; las mediciones de este sensor se compararon y relacionaron con las mediciones de una estación meteorológica de referencia para su comparación. En la estimación de la irradiancia solar global, la coeficiente angular de estimativa  fue 0.2201 y el residual fue r = 0.726. En la validación del modelo, los valores de MBE, MBE%, RMSE y RMSE% fueron, respectivamente, -72,9 W / m², -23,86%, 164,3 W / m² y 53,77%. Al estimar la irradiación solar global (integrada), el sensor BH1750FVI presentó un coeficiente de 0.22884 y un r residual = 0.899; los valores de validación MBE, MBE%, RMSE y RMSE% fueron, respectivamente, -0,017 MJ / m², -0,13%, 0,55 MJ / m² y 4,31%.

Citas

Arduino (2019a). Wire Library. https://www.arduino.cc/en/reference/wire

Arduino (2019a). Wire Library. https://www.arduino.cc/en/reference/wire

Arduino (2019b). SD Library. https://www.arduino.cc/en/reference/SD

Badamasi, Y. A. (2014, 9 September - 1 October). The working principle of an Arduino [Conference presentation abstract]. 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria. https://doi.org/10.1109/ICECCO.2014.6997578

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525-1534.

Dal Pai, E., Escobedo, J. F., & Martin, D. (2013). Radiações UV, PAR e IV em estufa de polietileno. Revista Brasileira de Energia Solar, 4(1), 1.

Dallas Semicondutor (2015). DS1302 Trickle-Charge Timekeeping Chip. Maxim Integrated Products. https://datasheets.maximintegrated.com/en/ds/DS1302.pdf

Frisina, V. A., Escobedo, J. F., & Gomes, E. N. (2000, 12-15 Setembro). Estimativa da radiação fotossinteticamente ativa (PAR) em estufa de polietileno [Proceedings]. III Encontro de Energia no Meio Rural, Campinas, SP, Brasil. http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC0000000022000000200056&lng=en&nrm=iso

Github (2015). ArduinoRTClibrary. https://github.com/chrisfryer78/ArduinoRTClibrary

Github (2020). ESP8266 Community Forum. https://github.com/esp8266/Arduino/releases/tag/2.7.4

Github (2021). BH1750. https://github.com/claws/BH1750

Kato, T. (2016). Prediction of photovoltaic power generation output and network operation. Integration of Distributed Energy Resources in Power Systems, 77-108.

Leens, F. (2009). An introduction to I 2 C and SPI protocols. IEEE Instrumentation & Measurement Magazine, 12(1), 8-13.

McCluney, W. R. (2014). Introduction to radiometry and photometry. Artech House.

Michael, P. R., Johnston, D. E., & Moreno, W. (2020). A conversion guide: solar irradiance and lux illuminance. Journal of Measurements in Engineering, 8(4), 153-166.

Pereira, A.S.; Shitsuka, D.M.; Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora UAB/NTE/UFSM. Santa Maria-RS.

Pizzatto, M., Zamadei, T., Miranda, S. A., Souza, A. P., & Zolin, C. (2019, 12-16 Agosto]. Estimativa da radiação fotossinteticamente ativa com base na radiação global na transição cerrado-amazônia [Anais]. XXI Congresso Brasileiro de Agrometeorologia, Catalão, Goiás, Brasil. CBAGRO, UFGO. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/210804/1/2019-cpamt-zolin-estimativa-radiacao-fotossintecamente-ativa-base-radiacao-global-transicao-cerrado-amazona.pdf

ROHM Semiconductor (2009). Digital 16bit Serial Output Type Ambient Light Sensor IC (Technical Note; 09046EBT01). https://html.alldatasheet.com/html-pdf/338083/ROHM/BH1750FVI/98/1/BH1750FVI.html

Schlyter, P. (2009). Radiometry and photometry in astronomy. http://stjarnhimlen.se/comp/radfaq.html

Srivastava, P., Bajaj, M., & Rana, A. S. (2018, 13-14 March). IOT based controlling of hybrid energy system using ESP8266 [Conference presentation abstract]. 2018 IEEMA Engineer Infinite Conference (eTechNxT), New Delhi, India. IEEE. https://doi.org/10.1109/ETECHNXT.2018.8385294

Trnka, M., Eitzinger, J., Kapler, P., Dubrovský, M., Semerádová, D., Žalud, Z., & Formayer, H. (2007). Effect of estimated daily global solar radiation data on the results of crop growth models. Sensors, 7(10), 2330-2362.

Yang, D., Wang, X., & Kang, J. (2018, 24-26 March). SWOT Analysis of the development of green energy industry in China: taking solar energy industry as an example [Conference presentation abstract]. 2018 2nd International Conference on Green Energy and Applications (ICGEA), Singapore, Asia. IEEE. http://dx.doi.org/10.1109/ICGEA.2018.8356320

Zhao, L., Xia, J., Xu, C. Y., Wang, Z., Sobkowiak, L., & Long, C. (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23(2), 359-369.

Publicado

30/10/2021

Cómo citar

SILVEIRA, V. B. .; DAL PAI, A. .; DAL PAI, E. Evaluación de desempeño del sensor BH1750FVI (bajo custo) en la medida de radiación solar global. Research, Society and Development, [S. l.], v. 10, n. 14, p. e170101421779, 2021. DOI: 10.33448/rsd-v10i14.21779. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21779. Acesso em: 6 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas