Efecto de la fotoexposición sobre la actividad antimicrobiana de basidiomicetos amazónicos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.22069

Palabras clave:

Hongos amazónicos; Compuestos bioactivos; Antibacterianos; Antifúngicos.

Resumen

Los microorganismos son una fuente prometedora de nuevas moléculas y una buena alternativa en la búsqueda de antimicrobianos. Sin embargo, sus condiciones de crecimiento pueden influir tanto en su desarrollo como en su producción de biomoléculas. El objetivo de este trabajo fue evaluar el efecto de la fotoexposición sobre la actividad antimicrobiana de ocho basidiomicetos. Estos se cultivaron en medio de agar malta, a temperatura ambiente, mantenidos con o sin exposición al sol durante diez días. Se obtuvieron extractos de acetato de etilo, los cuales fueron probados por el método de difusión en agar contra los patógenos Escherichia coli CBAM 001, Staphylococcus aureus CBAM 0324 y Candida albicans CFAM 1342. La identificación molecular de basidiomicetos se realizó mediante amplificación y secuenciación del fragmento de ADNr. Los hongos Pleurotus sp. 474 y Gloeophyllum sp. 1153 inhibió el crecimiento de E. coli CBAM 001, S. aureus CBAM 0324 y C. albicans CFAM 1342. Ninguno de estos patógenos fue inhibido por el hongo Schizophyllum commune 1210. La fotoexposición fue esencial para que el hongo Earliella scabrosa 1552 inhibiera el crecimiento de C. albicans, mientras que la ausencia de fotoexposición fue fundamental para el hongo Pleurotus sp. 474 inhiben el crecimiento de S. aureus CBAM 0324 y los hongos Gloeophyllum sp. 1153, Trametes sp. 1232 y Oudemansiella canarii 1528 inhibieron E. coli CBAM 001. Estos resultados mostraron la influência de la fotoexposición en la producción de antimicrobianos por basidiomicetos, lo que refuerza la importancia de elegir las condiciones de cultivo.

Biografía del autor/a

Karen Kelly Carvalho de Oliveira, Instituto Nacional de Pesquisas da Amazônia

Instituto Nacional de Investigaciones Amazónicas

Coordinación de Tecnología e Innovación

Thaíssa Cunha de Oliveira, Instituto Nacional de Pesquisas da Amazônia

Instituto Nacional de Investigaciones Amazónicas

Coordinación de Tecnología e Innovación

Ormezinda Celeste Cristo Fernandes, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane

Laboratorio de Biodiversidad, Fundación Oswaldo Cruz - Instituto Leônidas y Maria Deane

Pedro Queiroz Costa Neto, Universidade Federal do Amazonas

Laboratorio de Principios Bioactivos de Origen Microbiano, Universidad Federal de Amazonas

Maria Aparecida de Jesus, Instituto Nacional de Pesquisas da Amazônia

Instituto Nacional de Investigaciones Amazónicas
Coordinación de Tecnología e Innovación

Citas

Adebayo, E. A., Martiínez-Carrea, D., Morales, P., Sobal, M., Escudero, H., Meneses, M. E., Avila-Nava, A., Castillo, I. & Bonilla, M. (2018) Comparative study of antioxidant and antibacterial properties of the edible mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. International Journal of Food Science and Technology, 53(5):1316-1330. DOI: https://doi.org/10.1111/ijfs.13712

Alves, M. J., Ferreira, I. C. F. R., Dias, J., Teixeira, V., Martins, A. & Pintado, M. (2013). A review on antifungal activity of mushroom (Basidiomycetes) extracts and isolated compounds. Current Topics in Medicinal Chemistry, 13(21):2648-2659. DOI: 10.2174/15680266113136660191

Avin, F. A., Bhassu, S., Tan, Y. S., Shahbazi, P. & Vikineswary, S. (2014). Molecular Divergence and Species Delimitation of the Cultivated Oyster Mushrooms: Integration of IGS1 and ITS. The Scientific World Journal, 2014:1-10. DOI: https://doi.org/10.1155/2014/793414

Cheng, G., Dai, M., Ahemd, S., Hao, H., Wang, X. & Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers in Microbiology, 7(470):1-27. DOI: 10.3389/fmicb.2016.00470

Correa, R. C. G., Souza, A. H. P., Calhelha, R. C., Barros, L., Glamoclija, J., Sokovic, M., Peralta, R. M., Bracht, A. & Ferreira, I. C. F. R. (2015). Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food & Function, 6(7):2155–2164. DOI: 10.1039/c5fo00465a

Farha, M. A. & Brown, E. D. (2016). Strategies for target identification of antimicrobial natural products. Natural Products Reports, 33(5):668–680. DOI: 10.1039/c5np00127g

Gebreyohannes, G., Nyerere, A., Bii, C. & Sbhatu, D. B. (2019). Determination of Antimicrobial Activity of Extracts of Indigenous Wild Mushrooms against Pathogenic Organisms. Evidence-Based Complementary and Alternative Medicine, 2019:1-7. DOI: https://doi.org/10.1155/2019/6212673

Guo, Z. (2017). The modification of natural products for medical use. Acta Pharmaceutica Sinica B, 7(2):119-136, 2017. DOI: 10.1016/j.apsb.2016.06.003

He, M. Q., Zhao, R.L., Hyde, K. D., Begerow, D., Kemler, M., Yurkov, A. et al. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99:105–367. DOI: https://doi.org/10.1007/s13225-019-00435-4

Kandasamy, S., Chinnappan, S., Thangaswamy, S., Balakrishnan, S. & Khalifa, A.Y.Z. (2019). Assessment of Antioxidant, Antibacterial Activities and Bioactive Compounds of the Wild Edible Mushroom Pleurotus sajor‑caju. International Journal of Peptide Research and Therapeutics, 26, p.1575–1581, 2019. DOI: https://doi.org/10.1007/s10989-019-09969-2

Jorcin, G., Barneche, S., Vázquez, A., Cerdeiras, M. P. & Alborés, S. (2017). Effects of Culture Conditions on Antimicrobial Activity of Ganoderma resinaceum (Agaricomycetes) Extracts. International Journal of Medicinal Mushrooms, 19(8):737–744. DOI: 10.1615/IntJMedMushrooms.2017021217

Liew, G. M., Khong, H. Y. & Kutoi, C. J. (2015). Phytochemical Screening, Antimicrobial and Antioxidant Activities of Selected Fungi from Mount Singai, Sarawak, Malaysia. International Journal of Research Studies in Biosciences, 3, n.1, p.191-197.

Madhanraj, R., Ravikumar, K., Maya, M. R., Ramanaiah, I., Venkatakrishna, K., Rameshkumar, K., Veeramanikandan, V., Eyini, M., & Balaji, P. (2019). Evaluation of anti-microbial and anti-haemolytic activity of edible basidiomycetes mushroom fungi. Journal of Drug Delivery and Therapeutics, 9(1):132-135, 2019. DOI: https://doi.org/10.22270/jddt.v9i1.2277

Melo, M. R., Paccola-Meirelles, L.D., Faria, T.J. & Ishikawa, N. K. (2009). Influence of Flammulina velutipes mycelia culture conditions on antimicrobial metabolite production. Mycoscience, 50(1):78-81. DOI: https://doi.org/10.1007/S10267-008-0447-Z

Mirfat, A. H. S., Noorlidah, A. & Vikineswary, S. (2014). Antimicrobial activities of split gill mushroom Schizophyllum commune Fr. American Journal of Research Communication, 2(7):113-124.

Peng, T. Y. & Don, M. M. (2013). Antifungal Activity of In-vitro Grown Earliella scabrosa, a Malaysian Fungus on Selected Wood-degrading Fungi of Rubberwood. Journal of Physical Science, 24(2):21-33.

Rasser, F., Anke, T. & Sterner, O. (2000). Secondary metabolites from a Gloeophyllum species. Phytochemistry, 54(5):511-516. DOI: https://doi.org/10.1016/S0031-9422(00)00137-0

Rungjindamai, N., Pinruan, U., Choeyklin, R., Hattori, T. & Jones, E. B. G. (2008). Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal diversity, 33:139-161, 2008.

Sandargo, B., Chepkirui, C., Cheng, T., Chaverra-Muñoz, L., Thongbai, B., Stadler, M. & Hüttel, S. (2019). Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnology Advances, 37(6):1-33. DOI: https://doi.org/10.1016/j.biotechadv.2019.01.011

Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, Suppl.1, p.83-89. DOI: https://doi.org/10.1111/j.1755-0998.2009.02635.x

Singh, P. K., Kathuria, S., Agarwal, K., Gaur, S. N., Meis, J. F. &Chowdhary, A. (2013). Clinical Significance and Molecular Characterization of Nonsporulating Molds Isolated from the Respiratory Tracts of Bronchopulmonary Mycosis Patients with Special Reference to Basidiomycetes. Journal of Clinical Microbiology, 51(10):3331-3337. DOI: 10.1128/JCM.01486-13

Vahidi, H. & Namjoyan, F. (2004). Evaluation of Antimicrobial Activity of Oudemansiella sp. (Basidiomycetes). Iranian Journal of Pharmaceutical Research, 3(2):115-117. DOI: 10.22037/IJPR.2010.586

Publicado

02/11/2021

Cómo citar

OLIVEIRA, K. K. C. de .; OLIVEIRA, T. C. de .; FERNANDES, O. C. C. .; COSTA NETO, P. Q.; JESUS, M. A. de .; OLIVEIRA, L. A. de. Efecto de la fotoexposición sobre la actividad antimicrobiana de basidiomicetos amazónicos. Research, Society and Development, [S. l.], v. 10, n. 14, p. e320101422069, 2021. DOI: 10.33448/rsd-v10i14.22069. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22069. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas