La suplementación de lós médios de mantenimiento o de recultivo com resveratrol mejora La viabilidad de lós embriones bovinos producidos in vitro

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.22097

Palabras clave:

Efecto antioxidante; Desarrollo embrionario; Mantenimiento; Producción in vitro; Calentamiento.

Resumen

Se investigó el efecto de la suplementación con resveratrol en embriones bovinos frescos (E1) o vitrificados/calentados (E2) producidos in vitro, evaluando la respuesta tiempo-dependiente. Tras la producción in vitro, se añadió resveratrol (0,5 µM) a los medios y se volvieron a cultivarlos durante 24hs. Se evaluaron las tasas de reexpansión, eclosión, número total de células (TCN), células apoptóticas (ACN), especies reactivas de oxígeno (ROS) y contenido de glutatión (GSH). En E1, la tasa de reexpansión difería a las 6 y 10hs dentro de los tratamientos y entre ellos (P<0,05), al igual que la tasa de reexpansión después de 24 hs (P<0,01). La tasa de eclosión aumentó después de 10h con el resveratrol (P<0,01) con diferencias dentro (P<0,05), pero no entre los tratamientos después de 24hs de recultivo. En E2, la tasa de eclosión difería entre los tratamientos a las 24hs (P<0,01), con mayor TCN en los blastocistos tratados con resveratrol después de 10hs (P<0,01). La suplementación con resveratrol redujo la generación de ROS en E1 y E2 tras 10hs de incubación y aumentó el contenido de GSH (P<0,01). Estos resultados indican que la suplementación con resveratrol para el tratamiento de embriones bovinos frescos o vitrificados/calentados tiene un efecto positivo y dependiente del tiempo. La reducción del contenido de ROS, el aumento del GSH y la capacidad antiapoptótica del resveratrol son los responsables de sus efectos protectores, permitiendo prolongar el tiempo de almacenamiento de los embriones antes de su transferencia a las receptoras.

Citas

Al-Gubory, K. H., Fowler, P. A., & Garrel, C. (2010). The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. International Journal of Biochememistry and Cell Biology, 42, 1634-50.

Block, J., Bonilla, L., & Hansen, P. J. (2010). Efficacy of in vitro embryo transfer in lactating dairy cows using fresh or vitrified embryos produced in a novel embryo culture medium. Journal of Dairy Science, 93, 5234-42.

Block, J., Fischer-Brown, A. E., Rodina, T. M., Ealy, A. D., & Hansen, P. J. (2007). The effect of in vitro treatment of bovine embryos with IGF-1 on subsequent development in utero to day 14 of gestation. Theriogenology, 68, 153-61.

Bó, G., & Mapletoft, R. J. (2013). Evaluation and classification of bovine embryos. Animal Reproduction, 10, 344-8.

Cagnone, G., & Sirard, M. A. (2016). The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction, 152, 247-61.

Cavalieri, F. L. B., Andreazzi, M. A., Colombo, A. H. B., Emanuelli, I. P., Moreski, D. A. B., & Silva, W. M. (2015). Studies on in vitro bovine embryos during their transport. Ars Veterinaria, 31, 7-11. https://doi: 10.15361/2175-0106.2015v31n1p07-11.

Dalvit, G. C., Cetica, P. D., Pintos, L. N., & Beconi, M. T. (2005). Reactive oxygen species in bovine embryo in vitro production. Biocell , 29, 209-12.

Do, V. H., Catt, S., Amaya, G., Batsiokis, M., Walton, S., & Taylor-Robinson, A. W. (2018). Comparison of pregnancy in cattle when non-vitrified and vitrified in vitro-derived embryos are transferred into recipients. Theriogenology, 15, 105-10.

Ferraz, P. A., Burnley, C., Karanjam, J., Vieira-Neto, A., Santos, J. E., Chebel, R. C., & Galvão, K. N. (2016). Factors affecting the success of a large embryo transfer program in Holstein cattle in a commercial herd in the southeast region of the United States. Theriogenology, 86, 1834-41.

Hansen, P. J., Block, J., Loureiro, B., Bonilla, L., & Hendricks, K. E. M. (2010). Effects of gamete source and culture conditions on the competence of in vitro-produced embryos for post-transfer survival in cattle. Reproduction, Fertility, Development, 22, 59-66.

Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., & Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PloS One, 13(10), e0204571.

Hayashi, T., Kansaku, K., Abe, T., Ueda, S., & Iwata, H. (2019). Effects of Resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryopreserved by slow freezing. Animal Science Journal, 90, 849– 856.

Hayashi, T., Ueda, S., Mori, M., Baba, T., Abe, T., & Iwata, H. (2018). Influence of Resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number. Theriogenology, 106, 271-78.

Ideta, A., Aoyagi, Y., Tsuchiya, K., Kamijima, T., Nishimiya, Y., & Tsuda, S. (2013). A simple medium enables bovine embryos to be held for seven days at 4°C. Science Reproduction, 3, 1173. https://doi.org/10.1038/srep01173

Lee, T. H., Lee, M. S., Liu, C. H., Tsao, H. M., Huang, C. C., & Yang, Y. S. (2012). The association between microenvironmental reactive oxygen species and embryo development in assisted reproduction technology cycles. Reproduction Science, 19, 725–32.

Madrid Gaviria, S., López Herrera, A., Urrego, R., Restrepo Betancur, G., & Echeverri Zuluaga, J. J. (2019). Effect of Resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89, 42–50.

Madrid Gaviria, S., Morado, S. A., López Herrera, A., Restrepo Betancur, G., Urrego, R., Echeverri Zuluaga, J., & Cética, P. D. (2018). Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos. Reproduction, Fertility, Development, 31, 521-528.

Marinho, L. S. R., Untura, R. M., Morotti, F., Moino, L. L., Rigo, A. G., Sanches, B. V., Pontes, J. H. F., Seneda, M. M. (2012). Large-scale programs for recipients of in vitro-produced embryos. Animal Reproduction, 9, 323-8.

Marques, T. C., Silva, E. C., Diesel, T. O., Leme, L. O., Martins, C. F., Dode, M., Alves, B. G., Costa, F., de Oliveira, E. B., & Gambarini, M. L. (2018). Melatonin reduces apoptotic cells, SOD2 and HSPB1 and improves the in vitro production and quality of bovine blastocysts. Reproduction in Domestic Animals, 53, 226–36.

Marques, T. C., Santos, E., Diesel, T. O., Martins, C. F., Cumpa, H., Leme, L. O., Dode, M., Alves, B. G., Costa, F., Oliveira, E. B., & Gambarini, M. L. (2021). Blastocoel fluid removal and melatonin supplementation in the culture medium improve the viability of vitrified bovine embryos. Theriogenology, 160, 134–141. https://doi.org/10.1016/j.theriogenology.2020.10.028

Marsico, T. V., Camargo, J., Valente, R. S., & Sudano, M. J. (2019). Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction, 16, 423-39. https://doi.org/10.21451/1984-3143-ar2019-0072.

Morado, S. A., Cetica, P. D., Beconi, M. T., & Dalvit, G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reproduction, Fertility, Development, 21, 608–14.

Mori M, Otoi T, & Suzuki T. (2008). Correlation between the Cell Number and Diameter in Bovine Embryos Produced in vitro. Reproduction of Domestic Animals, 37, 181-4.

Nedambale, T. L., Dum, F., Yang, X., & Tian, X. C. (2006). Higher survival rate of vitrified and thawed in vitro produced bovine blastocysts following culture in defined medium supplemented with beta-mercaptoethanol. Animal Reproduction Science, 93, 61–75.

Papaioannou, V. E., & Ebert, K. M. (1988). The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development, 102, 793-803.

Romek M, Gajda B, Krzysztofowicz E, & Smorag Z. (2010). Changes of lipid composition in non-cultured and cultured porcine embryos. Theriogenology, 74, 265-76.

Salzano A, Albero G, Zullo G, Neglia G, Abdel-Wahab A, Bifulco G, & Zicarelli L, Gasparrini B. (2014). Effect of Resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science,151 (3-4), 91-6.

Sanches B. V., Zangirolamo A. F., & Seneda M. M. (2019). Intensive use of IVF by large-scale dairy programs. Animal Reproduction, 16, 394-401.

Silveira, M. M., Marques, T. C., Silva M. A. P., & Leão K. M. (2020). Development stag e at packaging affects viability of in vitro produced bovine embryos. Research, Society and Development, 9: e13496361. http://dx.doi.org/10.33448/rsd-v9i6.3615

Sovernigo, T C., Adona, P. R, Monzani, P. S., Guemra, S, Barros, F, Lopes, F. G., & Leal, C. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction of Domestic Animals, 52, 561-9.

Sprícigo, J. F., Morató, R, Arcarons, N., Yeste, M., Dode, M. A., López-Bejar, M., & Mogas, T. (2017). Assessment of the effect of adding L-carnitine and/or Resveratrol to maturation medium before vitrification on in vitro-matured calf oocytes. Theriogenology, 89, 47-57.

Sudano, M. J., Caixeta, E. S., Paschoal, D. M., Martins, A., Machado, R., Buratini, J., & Landim-Alvarenga, F. D. C. (2013). Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reproduction, Fertility, Development, 26, 1129-41. https://doi.org/ 10.1071/RD13099

Taniyama, A., Watanabe, Y., Nishino, Y., & Inoue, T. (2011). Assisted hatching of poor-quality bovine embryos increases pregnancy. Journal of Reproduction and Development, 57, 543–6.

Ufer, C., Wang, C. C., Borchert, B., Heydeck, D., & Kuhn, H. (2010). Redox control in mammalian embryo development. Antioxidant Redox Sign, 13, 833–75.

Wang, F., Tian, X., Zhang, L., He, C., Ji, P., Li, Y., Tan, D., & Liu, G. (2014). Beneficial effect of Resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertility and Sterility, 101, 577–86 10.1016/j.fertnstert.2013.10.041.

Yu, S., Long, H., Lyu, Q. F., Zhang, Q. H., Yan, Z. G., Liang, H. X., & Qi, C. (2014). Protective effect of quercetin on the development of pre-implantation mouse embryos against hydrogen peroxide- induced oxida-tive injury. PLoS One, 9: e89520.

Descargas

Publicado

05/11/2021

Cómo citar

SILVA, A. R. N. .; MARQUES, T. C. .; SANTOS, E. C. S. .; DIESEL, T. O. .; MACEDO , I. M. .; TEIXEIRA , R. C. .; MARTINS, C. F. .; ALVES , B. G. .; GAMBARINI, M. L. La suplementación de lós médios de mantenimiento o de recultivo com resveratrol mejora La viabilidad de lós embriones bovinos producidos in vitro. Research, Society and Development, [S. l.], v. 10, n. 14, p. e367101422097, 2021. DOI: 10.33448/rsd-v10i14.22097. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22097. Acesso em: 24 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas