Tratamiento electroquímico de lixiviados de vertedero mediante diferentes electrodos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i15.22102

Palabras clave:

Ánodo dimensionalmente estable; Diamante dopado con boro; Oxidación electroquímica; Tratamiento con lechada.

Resumen

Este artículo tiene como objetivo el estudio n estudio comparativo del tratamiento electroquímico de purines generados en rellenos sanitarios realizado con Ánodos Dimensionalmente Estables (ADE) (Ti / Ru0.3Ti0.7O2) y Diamante Dopado con Boro (DDB). A partir de la planificación y control de la capacidad (PCC) se obtuvo el diseño central compuesto rotado (DCCR), cuyas variables independientes en el proceso de electrólisis fueron la densidad de corriente, el tiempo y la concentración de electrolitos. La remoción de Carbono Orgánico Total (variable dependiente) fue 15.40% con densidad de corriente 158 mA cm-², tiempo de electrólisis 15 minutos y 0.2 mol L-1 del electrolito NaCl usando ADE. Con el DDB, en el punto óptimo a 82 mA cm-², 18,5 minutos y 0,19 mol L-1, se verificó la eliminación del 77% de la carga orgánica y la decoloración de aproximadamente el 40% Ultravioleta-Visible.

Biografía del autor/a

Geoffroy Roger Pointer Malpass, Universidade Federal do Triângulo Mineiro

Departamento de Engenharia Química 

Professor Associado II

Citas

Beigbeder, J-P., Boboescu, L. Z., & Lavoie, J-M. (2021). Treatment and valorization of municipal solid waste gasification effluent through a combined advanced oxidation – microalgal phytoremediation approach. Journal of Cleaner Production, 299, 126926.

Bethea, R. M. (2018). Statistical methods for engineers and scientists. (3a ed.), Routledge. 672p.

Box, G. E. P., & Hunter, J. S. (1978). Statistics for experiments to design, data analysis and model building, John Wiley & Sons,. 653p.

Brillas, E. (2020). A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere, 250, 126198.

Brillas, E., & Martinez-Huitle, C. A. (2015). Descontamination of wastewaters containing syntetic organic dyes by electrochemical methods. An update review. Applied Catalysis B: Environmental, 166-167, 603-643.

Cartaxo, A. S. B., Albuquerque, M. V. C., Paula e Silva, M. C. C., Rodrigues, R. M. M., Ramos, R. O., Sátiro, J. R. S., & Lopes, W. S., (2020). Contaminantes emergentes presentes em águas destinadas ao consumo humano: ocorrência, implicações e tecnologias de tratamento. Brazilian Journal of Development, 6, 61814- 61827.

Durán, F. E., Danyelle Medeiros de Araújo, D. M., Brito, C. N., Santos, E. V., Ganiyu, S. O., Martínez-Huitle, C. A., (2018). Electrochemical technology for the treatment of real washing machine effluent at pre-pilot plant scale by using active and non-active anodes. J. Electroanal. Chem., 818, 216-222.

Fanaei, F., Moussavi, G., & Shekoohiyan, S. (2020). Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H2O2-stimulated biotreatment of the effluent. Journal of Environmental Management, 271, 110941.

Gujar, S. K. & Gogate, P. R. (2021). Application of hybrid oxidative processes based on cavitation for the treatment of commercial dye industry effluents. Ultrasonics Sonochemistry, 75, 105586.

Hair, Jr., J. F., Black, W. C., Babin, B. J., Aanderson, R. E. & Tatham, R. L. (2009). Análise multivariada de dados. Bookman. 688p.

Mu, Y., Huang, C., Li, H., Chen, L., Zhanga, D., & Yang, Z., (2019). Electrochemical degradation of ciprofloxacin with a Sb-doped SnO2 electrode: performance, influencing factors and degradation pathways†, RSC Adv., 9, 29796.

Neto, W. B.; & Silva, T. A. R. (2013). Estudo da redução de acidez do óleo residual para a produção de biodiesel utilizando planejamento fatorial fracionado. Revista Virtual de Química., 5, 828-839.

Panizza, M. & Martinez-Huitle, C. A. (2013). Role of electrode materials for the anodic oxidation of a real landfill leachate – Comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere. 90, 1455–1460.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

RAO, S. S. (2019). Engineering optimization: theory and practice. 5ed. Coral Gables, John Wiley & Sons. 813p.

Saad, M. S., Wirzal, M. D. H. & Putra, Z. A. (2021). Review on current approach for treatment of palm oil mill effluent: Integrated system. Journal of Environmental Management, 286, 112209.

Sharma, S., & Simsek, H., (2019). Treatment of canola-oil refinery effluent using electrochemical methods: A comparison between combined electrocoagulation + electrooxidation and electrochemical peroxidation methods. Chemosphere, 221, 630-639.

Sousa, M. C., Anjos, D. A., Sales, E. M., & Andrade, M. R. A., (2015). Processos de tratamento do chorume e reaproveitamento: Uma revisão, Blucher Chemistry Proceedings, 3, 655-664.

Su, T., Wang, Z., Zhou, K., Chen, X., Cheng, Y., Zhang, G., Wu, D. W., & Sun, S-P., (2021). Advanced treatment of secondary effluent organic matters (EfOM) from an industrial park wastewater treatment plant by Fenton oxidation combining with biological aerated filter. Science of The Total Environment, 784, 147204.

Who. (2021). World Health Statistics: Monitoring health for the SDGs. www.who.int/.

Publicado

29/11/2021

Cómo citar

SANTOS, J. P. M. .; PEPPINO NETO, L. C. .; FREITAS, M. S. .; MALPASS, G. R. P.; FERREIRA, D. C. .; CASTRO, C. M. de . Tratamiento electroquímico de lixiviados de vertedero mediante diferentes electrodos. Research, Society and Development, [S. l.], v. 10, n. 15, p. e447101522102, 2021. DOI: 10.33448/rsd-v10i15.22102. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22102. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías