Acoplamientos magnetoeléctricos, magnetodieléctricos y magneto-impedancia en compuestos Bi1−xNdxFe0.99Co0.01O3

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.22189

Palabras clave:

Cerámica; BiFe03; Efecto magnetoeléctrico no lineal.

Resumen

En este trabajo se sintetizaron composiciones cerámicas Bi1 − xNdxFe0.99Co0.01O3 para x = 0.05, 0.20 e, y = 0.01. Los resultados del refinamiento estructural muestran que la mayoría de las muestras cristalizaron en una simetría romboédrica con R3c. Las mediciones del coeficiente magnetoeléctrico, muestran que los coeficientes magnetoeléctricos son de segundo orden. La caracterización de impedancia eléctrica de campos magnéticos externos en función, tiene una variación relativa de la respuesta dieléctrica real, la tangente de pérdidas y la impedancia eléctrica. Los sistemas, a medida que la intensidad del campo magnético de CC aumentaron una ganancia tanto en los valores de la variación de la constante dieléctrica, como en la variación de la impedancia eléctrica. En otras palabras, cuanto mayor sea la intensidad del campo magnético, mayor será su respuesta. También hubo variaciones significativas con el campo magnético AC.

Citas

Bilmes S. A., Mandelbaum P., Alvarez, F. & Victoria N. M. (2000). Surface and Electronic Structure ofTitanium Dioxide Photocatalysts, 104, 9851–9858.

Chizhik A., Vega V., Mohamed A. E.-M. A., Prida V., Sánchez T., Hernando B., Ipatov M., Zhukova V., Zhukov A., Stupakiewicz A., Domínguez L., & González J. (2017). Surface magnetic properties and giant magnetoimpedance effect in co-based amorphous ribbons. Intermetallics, 86, 15–19.

de Oliveira O. G. (2015). Refinamento Estrutural e Cálculos de Densidade Eletrônica no Sistema Multiferróico (Bi1-xNdx)(Fe1-yCoy)O3. Dissertação de Mestrado, Universidade Estadual de Maringá, Maringá.

Fei L., Hu Y., Li X., Song R. et al. (2015). Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices Acs Applied Materials and Interfaces 7, 3665.

Fischei, P, Polemska, M, Sosnowska, I & Szymanski, M (1931). Temperature dependence of the crystal and magnetic structures of BiFeO3 1980 J. Phys. C 13,1931.

Geng Y., et al (2014). Direct visualization of magnetoelectric domains, Nature Materials, 13, 163–167.

Hasan M., Islam M. F., Mahbub R., Hossain M. S & Hakim, M. A (2016). A soft chemical route to the synthesis of BiFeO3 nanoparticles with enhanced magnetization. Boletim de Pesquisa de Materiais 73, 179

Kammouni R. E., Kurlyandskaya G., Vázquez M., & Volchkov S. (2016). Magnetic properties and magnetoimpedance of short CuBe/CoFeNi electroplated microtubes. Sensors and Actuators A: Physical, 248, 155–161.

Li B., Kavaldzhiev M. N., & Kose, J. (2015). Flexible magnetoimpedance sensor. Journal of Magnetism and Magnetic Materials, vol. 378, pp. 499–505.

Li B., Wang C., Liu W., Ye M. & Wang N. (2013). Magnetic and Photocatalytic Behaviors of Ca Mn Co-Doped BiFeO3 Nanofibres. Materials Letters ,90, 45.

Liu Y., Yao Y., Dong S., Jiang T., Yang S., & Li X. (2012). Colossal magnetocapacitance effect in BiFeO3/La5/8Ca3/8MnO3 epitaxial films. Thin Solid Films, 520(17), 5775–5778.

Mincache, A. J., et al (2016). Evidencing the magnetoelectric coupling in Bi1-xNdxFeO3 compositions through ferroic characterizations. Integr. Ferroelectr. 174 pp. 98-103.

Phan M. H., & Peng H. X. (2008). Giant magnetoimpedance materials: fundamentals and applications, Prog. Mater. Sci. 53, 323e420, https://doi.org/10.1016/ j.pmatsci.2007.05.003

Pirc R. & Blinc R. (2010). Nonlinear magnetoelectric effect in magnetically disordered relaxor ferroelectrics. Ferroelectrics, 400(1), 387–394.

Ramazanoglu M., Ii W.R., Choi Y.J., Lee S., Cheong S., & Kiryukhin V. (2011). Temperature-dependentproperties of the magnetic order in single-crystal BiFeO3, 174434, 1–6.

Rana D. K., Kundu S. K., Choudhary, R. J. & Basu,1 (2019). Enhancement of electrical and magnetodielectric properties of BiFeO3 incorporated PVDF flexible nanocomposite films. Published IOP Publishing Ltd.

Shen Y., Gao J., Wang Y., Finkel P., Li, J. & Viehland D. (2013). Piezomagnetic straindependent non-linear magnetoelectric response enhancement by flux concentration effect. Applied Physics Letters, 102(17), 172904.

Shvartsman V. V., Kleemann W., Haumont R., & Kreisel J. (2007). Large bulk polarization and regular domain structure in ceramic BiFeO3. Applied Physics Letters, 90(17), 172115.

Singh O., A. Agarwal, Amitabh Das, & Sanghi S., Jinda A. (2017). Evolution of structural and magnetic phases in Nd doped BiFeO3 multiferroics with sintering time. 442, 200-207.

Tokura Y., Seki S., & Nagaosa N. (2014). Multiferroics of spin origin. Reports on Progress in Physics 77(7), 76501.

Wang, J., et al (2003). Effect of Ba Substitution on the Structural and Magnetic Properties of BiFeO3 Science (New York, N.Y.) 299(5613) 1719.

Descargas

Publicado

10/11/2021

Cómo citar

MINCACHE, A. J. .; OLIVEIRA, O. G. de .; TUPAN, L. F. da S. .; SILVA, D. M. .; SANTOS, I. A. dos .; COTICA, L. F. . Acoplamientos magnetoeléctricos, magnetodieléctricos y magneto-impedancia en compuestos Bi1−xNdxFe0.99Co0.01O3. Research, Society and Development, [S. l.], v. 10, n. 14, p. e470101422189, 2021. DOI: 10.33448/rsd-v10i14.22189. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22189. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Exactas y de la Tierra