Desarrollo de una órtesis mudelar de muñeca, mano y dedos por manufatura aditiva
DOI:
https://doi.org/10.33448/rsd-v10i15.22707Palabras clave:
Órtesis; Manufactura Aditiva; Material flexible; Modular; Bajo costo.Resumen
La Manufactura Aditiva (AM) se ha considerado una tecnología innovadora para el desarrollo de órtesis. Aun así, todavía no se ha explorado en la AM el uso combinado de materiales rígidos y flexibles de bajo costo que podrían ser utilizados conjuntamente, de diferentes maneras, por un mismo usuario en la forma de una órtesis modularizada. Objetivo: desarrollar una órtesis modular de muñeca, mano y dedos que pueda ser utilizada simultáneamente como una órtesis funcional o estática, en función del objetivo terapéutico. La órtesis se produce mediante la Manufactura Aditiva de bajo costo, por medio de un único proceso de adquisición de anatomía. Enfoque: primero, se definieron los requisitos para la modularización y el desarrollo en un equipo con terapeutas ocupacionales e ingenieros mecánicos. Después de la adquisición de la anatomía indirecta de un voluntario sin discapacidades se modelaron dos partes de la misma órtesis, siendo una flexible (funcional) y otra rígida (estática). Estas fueron impresas en PLA (unidad estática) y en TPU flexible (unidad funcional) con una impresora 3D común de código abierto. Además, se fabricaron tiras de sujeción en TPU flexible. Resultados: fueron fabricadas tres partes que componen la órtesis modular. Esta puede utilizarse de dos maneras diferentes; una para mantener la postura estática de la muñeca, de la mano y de los dedos, y la otra para proporcionar funcionalidad a las manos, pero manteniendo la posición correcta de la muñeca y del pulgar. Originalidad: incluso con un material de bajo costo y una máquina de código abierto, fue posible generar una propuesta innovadora utilizándose la AM como proceso de fabricación de la órtesis.
Citas
Arakaki, V. C., Cardoso, M.C., Thinen, N.C., Imamura, M., & Battistella, L.R. (2012). Cerebral palsy - upper limbs: rehabilitation. Acta Fisiátrica, 19(2), 123–129. https://doi.org/10.5935/0104-7795.20120019
Baronio, G., Volonghi, P., & Signoroni, A. (2017). Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis. Applied Bionics and Biomechanics, 2017, Article 8171520. https://doi.org/10.1155/2017/8171520
Blaya, F., Pedro, P. S., Silva, J. L., D’Amato, R., Heras, E. S., & Juanes, J. A. (2018). Design of an Orthopedic Product by Using Additive Manufacturing Technology: The Arm Splint. Journal of Medical Systems, 42(3). https://doi.org/10.1007/s10916-018-0909-6
Chen, R. K., Jin, Y., Wensman, J., & Shih, A. (2016). Additive manufacturing of custom orthoses and prostheses-A review. Additive Manufacturing, 12(A), 77-89. https://doi.org/10.1016/j.addma.2016.04.002
Souza, M. A., Schmitz, C., Pinhel, M. M., Setti, J. A. P., & Nohama, P. (2017). Proposal of custom made wrist orthoses based on 3D modelling and 3D printing. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society - EMBS, 3789–3792. https://doi.org/10.1109/EMBC.2017.8037682
Fernandez-Vicente, M., Escario Chust, A., & Conejero, A. (2017), Low cost digital fabrication approach for thumb orthoses, Rapid Prototyping Journal, 23(6), 1020-1031. https://doi.org/10.1108/RPJ-12-2015-0187
Jackman, M., Novak, I., & Lannin, N. (2014). Effectiveness of hand splints in children with cerebral palsy: a systematic review with meta-analysis. Developmental medicine and child neurology, 56(2), 138–147. https://doi.org/10.1111/dmcn.12205
Kelly, S., Paterson, A., & Bibb, R. (2015). A review of wrist splint designs for additive manufacture. RDPM 14: Rapid Design, Prototyping and Manufacture conference. Article 55901598.
Kim, H., & Jeong, S. Case study: Hybrid model for the customized wrist orthosis using 3D printing. J Mech Sci Technol. 29, 5151–5156. https://doi.org/10.1007/s12206-015-1115-9
Koutny, D., Palousek, D., Koutecky, T., Zatocilova, A., Rosicky, J., & Janda, M. (2012). 3D Digitalization of the Human Body for Use in Orthotics and Prosthetics. World Academy of Science, Engineering and Technology International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 6(12), 690–697.
Morris, C., Bowers, R., Ross, K., Stevens, P., & Phillips, D. (2011). Orthotic management of cerebral palsy: Recommendations from a consensus conference. NeuroRehabilitation, 28(1), 37–46. https://doi.org/10.3233/NRE-2011-0630
Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., & Navrat, T. (2013). Pilot study of the wrist orthosis design process. Rapid Prototyping Journal, 20(1), 27–32. https://doi.org/10.1108/RPJ-03-2012-0027
Paterson, A. M., Bibb, R., Campbell, R. I., & Bingham, G. (2015). Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyping Journal, 21(3), 230–243. https://doi.org/10.1108/RPJ-10-2013-0099
Paterson, A. M., Donnison, E., Bibb, R. J., & Ian Campbell, R. (2014). Computer-aided design to support fabrication of wrist splints using 3D printing: A feasibility study. Hand Therapy, 19(4), 102–113. https://doi.org/10.1177/1758998314544802
Paterson, A. M. J. et al. (2010). A review of existing anatomical data capture methods to support the mass customisation of wrist splints. Virtual and Physical Prototyping, 5 (4), 201-207.
Poier, P. H., Weigert, M. C., Rosenmann, G. C., de Carvalho, M. G. R., Ulbricht, L., & Foggiatto, J. A. (2021). The development of low-cost wrist, hand, and finger orthosis for children with cerebral palsy using additive manufacturing. Research on Biomedical Engineering, 37(3), 445–453. https://doi.org/10.1007/s42600-021-00157-0
Rosenmann G. C. et al. (2018). Development and evaluation of low-cost custom splint for spastic hand by additive manufacturing. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-319-60582-1_70
Santos, A. (2018). Seleção do método de pesquisa: guia para pós-graduando em design e áreas afins. Curitiba: Insight.
Schwartz, D. A. (2020). Orthoses, Orthotic Fabrication, and Elastic Therapeutic Taping for the Pediatric Population. Solomon, J.W., O'Brien, J.C. (Ed.s), Pediatric Skills for Occupational Therapy Assistants, Elsevier, Missouri, St. Louis, 586 – 607.
Trujillo, L. G., & Amini, D. (2013). Creating a custom fabricated neoprene orthosis for optimal thumb positioning. Journal of Hand Therapy, 26(4), 365–368. https://doi.org/10.1016/j.jht.2013.05.008
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Paloma Hohmann Poier; Rodrigo Pulido Arce; Gabriel Chemin Rosenmann; Maria Gabriela Reis Carvalho; Leandra Ulbricht; José Aguiomar Foggiatto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.