Análisis de variables de procesamiento en deformaciones Presionando em Canales Equiangulares

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i16.23101

Palabras clave:

Prensado de canal equiangular; SPD; Procesamiento de variables; Ángulo de curvatura; Ángulo de canal.

Resumen

El prensado en canal equiangular (ECAP) es, con mucho, la técnica más prometedora, mediante el método de deformación plástica severa (SPD), pudiendo producir grandes volúmenes de materiales suficientes para aplicaciones prácticas. El proceso ECAP se puede repetir hasta que se alcanza la saturación del refinado, lo que genera grandes cantidades de deformación por cizallamiento. La razón de las excepcionales propiedades obtenidas en los materiales procesados ​​por ECAP se atribuyó a la microestructura del material obtenido en este proceso de deformación. Este trabajo investigó las variables de deformación ECAP en la literatura con el fin de analizar el efecto de cada una de ellas en la microestructura de los materiales procesados. Los artículos fueron recolectados de las siguientes bases de datos: ScienceDirect y Scientific Electronic Library Online (SciELO), ya que incluyen literatura nacional e internacional. Con base en los resultados encontrados, se pudo ver que se deben analizar varios parámetros para deformar metales puros y aleaciones, para refinar la microestructura, como el ángulo de flexión y el ángulo de canal de la matriz de deformación, el número de pasadas y la temperatura de prensado. Se pudo comprobar que cambios en estas variables configuran cambios en la microestructura.

Citas

Abd el aal, M. I., & Sadawy, M. M. (2015). Influence of ECAP as grain refinement technique on microstructure evolution, mechanical properties and corrosion behavior of pure aluminum. Transactions of Nonferrous Metals Society of China, 25(12), 3865–3876.

Adedokun, S. T. (2011). A review on equal channel angular extrusion as a deformation and grain refinement process. Journal of Emerging Trends in Engineering and Applied Sciences, 2(2), 360–363.

Aida, T., Matsuki, K., Horita, Z., & Langdon, T. G. (2001). Estimating the equivalent strain in equal-channel angular pressing. Scripta Materialia, 44(4), 575–579.

Dumoulin, S., Roven, H. J., Werenskiold, J. C., & Valberg, H. S. (2005). Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry. Materials Science and Engineering: A, 410–411, 248–251.

Faghihi, S., Azari, F., Zhilyaev, A. P., Szpunar, J. A., Vali, H., & Tabrizian, M. (2007). Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials, 28(27), 3887–3895.

Figueiredo, R. B., Poggiali, F. S. J., Silva, C. L. P., Cetlin, P. R., & Langdon, T. G. (2016). The influence of grain size and strain rate on the mechanical behavior of pure magnesium. Journal of Materials Science, 51(6), 3013–3024.

Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., & G. Langdon, T. (1998). The Shearing Characteristics Associated with Equal-Channel Angular Pressing 257(2), 328-332.

Iwahashi, Y., Horita, Z., Nemoto, M., & Langdon, T. G. (1998). The process of grain refinement in equal-channel angular pressing. Acta Materialia, 46(9), 3317–3331.

Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., & Langdon, T. G. (1996). Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, 35(2), 143–146.

Langdon, T. G. (2007). The principles of grain refinement in equal-channel angular pressing. Materials Science and Engineering: A, 462(1), 3–11.

Langdon, T. G. (2013). Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, 61(19), 7035–7059.

Mazurina, I., Sakai, T., Miura, H., Sitdikov, O., & Kaibyshev, R. (2008). Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Materials Science and Engineering: A, 486(1), 662–671.

Nakashima, K., Horita, Z., Nemoto, M., & Langdon, T. G. (1998). Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Materialia, 46(5), 1589–1599.

Popov, V. V. & Popova, E. N. (2019). Behavior of Nb and Cu–Nb Composites under Severe Plastic Deformation and Annealing. Materials Transactions, 60 (7), 1209-1220.

Queiroz, A. V. de, Fernandes, M. T., Silva, L. M. da, & Neil De, M. (2014). Análise Teórica e Numérica do Processamento Não-Isotérmico de Materiais Via A Técnica de Prensagem em Canais Equiangulares. Cadernos UniFOA. 9 (26), 5-15.

Roodposhti, P. S., Farahbakhsh, N., Sarkar, A., & Murty, K. L. (2015). Microstructural approach to equal channel angular processing of commercially pure titanium—A review. Transactions of Nonferrous Metals Society of China, 25(5), 1353–1366.

Rowley, J., & Slack, F. (2004). Conducting a literature review. Management Research News, 27 (6), 31-39.

RZ Valiev ,TC Lowe &AK Mukherjee. (2000). Understanding the unique properties of SPD-induced microstructures. JOM, 52 , 37–40.

Sabirov, I., Murashkin, M. Yu., & Valiev, R. Z. (2013). Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Materials Science and Engineering: A, 560, 1–24.

Segal, V. M. (1974). Methods of stress-strain analysis in metal-forming. Physical Technical Institute Academy of Sciences of Buelorussia, Minsk, Russia.

Segal, V. M. (1995). Materials processing by simple shear. Materials Science and Engineering: A, 197(2), 157–164.

Segal, V. M., Hartwig, K. T., & Goforth, R. E. (1997). In situ composites processed by simple shear. Materials Science and Engineering: A, 224(1), 107–115.

Sivakumar, S. M., & Ortiz, M. (2004). Microstructure evolution in the equal channel angular extrusion process. Computer Methods in Applied Mechanics and Engineering, 193(48), 5177–5194.

Skrotzki, Werner. (2019). Deformation Heterogeneities in Equal Channel Angular Pressing. Materials transactions, 60 (7), 1331-1343.

Sordi, V. L., Ferrante, M., Kawasaki, M., & Langdon, T. G. (2012). Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. Journal of Materials Science, 47(22), 7870–7876.

Stolyarov, V. V., Zhu, Y. T., Alexandrov, I. V., Lowe, T. C., & Valiev, R. Z. (2001). Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science and Engineering: A, 299(1), 59–67.

Suwas, S., Gottstein, G., & Kumar, R. (2007). Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium. Materials Science and Engineering: A, 471(1), 1–14.

Valiev, R. (2004). Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, 3(8), 511–516.

Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51(7), 881–981.

Xu, C., Furukawa, M., Horita, Z., & Langdon, T. G. (2005). The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP. Materials Science and Engineering: A, 398(1), 66–76.

Yamashita, A., Yamaguchi, D., Horita, Z., & Langdon, T. G. (2000). Influence of pressing temperature on microstructural development in equal-channel angular pressing. Materials Science and Engineering: A, 287(1), 100–106.

Zhao, X., Yang, X., Liu, X., Wang, X., & Langdon, T. G. (2010). The processing of pure titanium through multiple passes of ECAP at room temperature. Materials Science and Engineering: A, 527(23), 6335–6339.

Zhu, Y. T., & Lowe, T. C. (2000). Observations and issues on mechanisms of grain refinement during ECAP process. Materials Science and Engineering: A, 291(1), 46–53.

Descargas

Publicado

09/12/2021

Cómo citar

SANTOS, R. T. F. dos .; BATISTA, W. W. . Análisis de variables de procesamiento en deformaciones Presionando em Canales Equiangulares. Research, Society and Development, [S. l.], v. 10, n. 16, p. e140101623101, 2021. DOI: 10.33448/rsd-v10i16.23101. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23101. Acesso em: 1 oct. 2024.

Número

Sección

Ingenierías